Design of X-Bar Control Chart for Resampling Under Uncertainty Environment


Book Description

This paper presents the designing of the X-bar control chart using resampling scheme under the uncertainty environment. The necessary measures of the present chart are derived under the neutrosophic system. The neutrosophic average run length (NARL) when the process is in-control and out-of-control are derived under the neutrosophic statistical interval method (NSIM). The neutrosophic control chart coefcients are determined through the algorithm developed under NSIM. The comparative study shows that the proposed chart is better than the existing chart in NARL.




A New X-Bar Control Chart for Using Neutrosophic ExponentiallyWeighted Moving Average


Book Description

The existing Shewhart X-bar control charts using the exponentially weighted moving average statistic are designed under the assumption that all observations are precise, determined, and known. In practice, it may be possible that the sample or the population observations are imprecise or fuzzy. In this paper, we present the designing of the X-bar control chart under the symmetry property of normal distribution using the neutrosophic exponentially weighted moving average statistics. We will first introduce the neutrosophic exponentially weighted moving average statistic, and then use it to design the X-bar control chart for monitoring the data under an uncertainty environment. We will determine the neutrosophic average run length using the neutrosophic Monte Carlo simulation. The eciency of the proposed plan will be compared with existing control charts.




Design of a Control Chart Based on COM-Poisson Distribution for the Uncertainty Environment


Book Description

This paper will introduce the neutrosophic COM-Poisson (NCOM-Poisson) distribution. Then, the design of the attribute control chart using the NCOM-Poisson distribution is given.The structure of the control chart under the neutrosophic statistical interval methodwill be given.Thealgorithm to determine the average run length under neutrosophic statistical interval systemwill be given. The performance of the proposed control chart is compared with the chart based on classical statistics in terms of neutrosophic average run length (NARL). A simulation study and a real example are also added. From the comparison of the proposed control chart with the existing chart, it is concluded that the proposed control chart is more efficient in detecting a shift in the process. Therefore, the proposed control chart will be helpful in minimizing the defective product. In addition, the proposed control chart is more adequate and effective to apply in uncertainty environment.




Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation


Book Description

This book presents recent research in intelligent and fuzzy techniques. Emerging conditions such as pandemic, wars, natural disasters and various high technologies force people for significant changes in business and social life. The adoption of digital technologies to transform services or businesses, through replacing non-digital or manual processes with digital processes or replacing older digital technology with newer digital technologies through intelligent systems is the main scope of this book. It focuses on revealing the reflection of digital transformation in our business and social life under emerging conditions through intelligent and fuzzy systems. The latest intelligent and fuzzy methods and techniques on digital transformation are introduced by theory and applications. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc. and Ph.D. students studying digital transformation. Usage of ordinary fuzzy sets and their extensions, heuristics and metaheuristics from optimization to machine learning, from quality management to risk management makes the book an excellent source for researchers.




Process Monitoring for Gamma Distributed Product under Neutrosophic Statistics Using Resampling Scheme


Book Description

In this article, a repetitive sampling control chart for the gamma distribution under the indeterminate environment has been presented. The control chart coefficients, probability of in-control, probability of out-of-control, and average run lengths have been determined under the assumption of the symmetrical property of the normal distribution using the neutrosophic interval method.




Neutrosophy


Book Description




Statistical Methods in Water Resources


Book Description

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.




Decision Making under Deep Uncertainty


Book Description

This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.




Statistics with Confidence


Book Description

This highly popular introduction to confidence intervals has been thoroughly updated and expanded. It includes methods for using confidence intervals, with illustrative worked examples and extensive guidelines and checklists to help the novice.




Introduction to Neutrosophic Statistics


Book Description

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.