Design Strategies for Efficient and Sustainable Building Facilities


Book Description

Despite the growing emphasis on energy efficiency in building design, our indoor environments often fall short of providing optimal conditions for health and well-being. Indoor air quality, temperature, and lighting levels play crucial roles in occupant health, yet they are frequently overlooked in building practices. This oversight leads to environments that can harm health, contributing to respiratory problems, allergies, and reduced productivity. Design Strategies for Efficient and Sustainable Building Facilities offers a comprehensive solution. We delve into recent advances in building design, construction, and operation that prioritize energy efficiency and occupant health. By incorporating intelligent sensors, automation systems, and renewable energy sources like solar and wind power, buildings can be transformed into healthy, sustainable spaces that promote well-being. This book is tailored for researchers, professionals, university professors, and master's and doctoral students who seek to advance sustainable building practices.




Design Strategies for Efficient and Sustainable Building Facilities


Book Description

Despite the growing emphasis on energy efficiency in building design, our indoor environments often fall short of providing optimal conditions for health and well-being. Indoor air quality, temperature, and lighting levels play crucial roles in occupant health, yet they are frequently overlooked in building practices. This oversight leads to environments that can harm health, contributing to respiratory problems, allergies, and reduced productivity. Design Strategies for Efficient and Sustainable Building Facilities offers a comprehensive solution. We delve into recent advances in building design, construction, and operation that prioritize energy efficiency and occupant health. By incorporating intelligent sensors, automation systems, and renewable energy sources like solar and wind power, buildings can be transformed into healthy, sustainable spaces that promote well-being. This book is tailored for researchers, professionals, university professors, and master's and doctoral students who seek to advance sustainable building practices.




The Whole Building Handbook


Book Description

The Whole Building Handbook is a compendium of all the issues and strategies that architects need to understand to design and construct sustainable buildings for a sustainable society. The authors move beyond the current definition of sustainability in architecture, which tends to focus on energy-efficiency, to include guidance for architecture that promotes social cohesion, personal health, renewable energy sources, water and waste recycling systems, permaculture, energy conservation - and crucially, buildings in relation to their place. The authors offer a holistic approach to sustainable architecture and authoritative technical advice, on: * How to design and construct healthy buildings, through choosing suitable materials, healthy service systems, and designing a healthy and comfortable indoor climate, including solutions for avoiding problems with moisture, radon and noise as well as how to facilitate cleaning and maintenance. * How to design and construct buildings that use resources efficiently, where heating and cooling needs and electricity use is minimized and water-saving technologies and garbage recycling technologies are used. * How to 'close' organic waste, sewage, heat and energy cycles. For example, how to design a sewage system that recycles nutrients. * Includes a section on adaptation of buildings to local conditions, looking at how a site must be studied with respect to nature, climate and community structure as well as human activities. The result is a comprehensive, thoroughly illustrated and carefully structured textbook and reference.




Building Services Design for Energy Efficient Buildings


Book Description

The role and influence of building services engineers is undergoing rapid change and is pivotal to achieving low-carbon buildings. However, textbooks in the field have largely focused on the detailed technicalities of HVAC systems, often with little wider context. This book addresses that need by embracing a contemporary understanding of energy efficiency imperatives, together with a strategic approach to the key design issues impacting upon carbon performance, in a concise manner. The key conceptual design issues for planning the principal systems that influence energy efficiency are examined in detail. In addition, the following issues are addressed in turn: Background issues for sustainability and the design process Developing a strategic approach to energy-efficient design How to undertake load assessments System comparison and selection Space planning for services Post-occupancy evaluation of completed building services In order to deliver sustainable buildings, a new perspective is needed amongst building and services engineering designers, from the outset of the conceptual design stage and throughout the whole design process. In this book, students and practitioners alike will find the ideal introduction to this new approach.




Fundamentals of Integrated Design for Sustainable Building


Book Description

The Fully Updated, Indispensible Study of Sustainable Design Principles Fundamentals of Integrated Design for Sustainable Building is the first textbook to merge principles, theory, and practice into an integrated workflow. This book introduces the technologies and processes of sustainable design and shows how to incorporate sustainable concepts at every design stage. This comprehensive primer takes an active learning approach that keeps students engaged. This book dispenses essential information from practicing industry specialists to provide a comprehensive introduction to the future of design. This new second edition includes: Expansive knowledge—from history and philosophy to technology and practice Fully updated international codes, like the CAL code, and current legislations Up-to-date global practices, such as the tools used for Life-Cycle Assessment Thorough coverage of critical issues such as climate change, resiliency, health, and net zero energy building Extensive design problems, research exercise, study questions, team projects, and discussion questions that get students truly involved with the material Sustainable design is a responsible, forward-thinking method for building the best structure possible in the most efficient way. Conventional resources are depleting and building professionals are thinking farther ahead. This means that sustainable design will eventually be the new standard and everyone in the field must be familiar with the concepts to stay relevant. Fundamentals of Integrated Design for Sustainable Building is the ideal primer, with complete coverage of the most up to date information.




Planning and Design Strategies for Sustainability and Profit


Book Description

This practical guide demonstrates the benefits of sustainable design, emphasising its development as an economically viable and profitable option. It provides: * A unique focus on how to create profit from sustainable design and planning of the built environment * Hands-on advice showing how theories of sustainability can be applied in actual projects * A universal perspective, through multi-national case studies from Europe, North America and Australia In Planning and Design Strategies for Sustainability and Profit, Adrian Pitts identifies current problems which demand the employment of a new holistic approach to sustainability. The book details the issues, and provides a range of potential solutions and techniques that can be applied by the architect and urban designer at both the building and urban scale. It goes on to provide examples of good practice and guidelines for future development - essential information that shows how sustainability has been developed to provide tangible benefits, not only to the environment, but also to users and designers.




The Integrative Design Guide to Green Building


Book Description

"The members of 7group and Bill Reed are examples writ large of the kind of leadership that is taking this idea of green building and forming it into reality, by helping change minds, building practice, and design process." —from the Foreword by S. Rick Fedrizzi President, CEO, and Founding Chair, U.S. Green Building Council A whole-building approach to sustainability The integrative design process offers a new path to making better green building decisions and addressing complex issues that threaten living systems. In The Integrative Design Guide to Green Building: Redefining the Practice of Sustainability, 7group's principals and integrative design pioneer Bill Reed introduce design and construction professionals to the concepts of whole building design and whole systems. With integrative thinking that reframes what sustainability means, they provide a how-to guide for architects, designers, engineers, developers, builders, and other professionals on incorporating integrative design into every phase of a project. This practical manual: Explains the philosophy and underpinnings of effective integrative design, addressing systems thinking and building and community design from a whole-living system perspective Details how to implement integrative design from the discovery phase to occupancy, supported by process outlines, itemized tasks, practice examples, case studies, and real-world stories illustrating the nature of this work Explores the deeper understanding of integration that is required to transform architectural practice and our role on the planet This book, both practical and thoughtful, will help you deliver your vision of a sustainable environment. 7group, based in Kutztown, Pennsylvania, includes principals John Boecker, Scot Horst, Tom Keiter, Andrew Lau, Marcus Sheffer, and Brian Toevs, who bring a unique integration of expertise in design, engineering, energy and daylight modeling, materials assessments, commissioning, education, and communications to their work. Internationally recognized thought leaders in the green building movement, they have led countless teams through the practical implementation of integrative design on building projects of all types around the world. 7group also has been directly and deeply involved with the development of the LEED® Green Building Rating System, including experience on more than 100 LEED projects. Scot Horst currently serves as chair of the U.S. Green Building Council's LEED Steering Committee.




Achieving High-Performance Federal Facilities


Book Description

The design, construction, operation, and retrofit of buildings is evolving in response to ever-increasing knowledge about the impact of indoor environments on people and the impact of buildings on the environment. Research has shown that the quality of indoor environments can affect the health, safety, and productivity of the people who occupy them. Buildings are also resource intensive, accounting for 40 percent of primary energy use in the United States, 12 percent of water consumption, and 60 percent of all non-industrial waste. The processes for producing electricity at power plants and delivering it for use in buildings account for 40 percent of U.S. greenhouse gas emissions. The U.S. federal government manages approximately 429,000 buildings of many types with a total square footage of 3.34 billion worldwide, of which about 80 percent is owned space. More than 30 individual departments and agencies are responsible for managing these buildings. The characteristics of each agency's portfolio of facilities are determined by its mission and its programs. In 2010, GSA's Office of Federal High-Performance Green Buildings asked the National Academies to appoint an ad hoc committee of experts to conduct a public workshop and prepare a report that identified strategies and approaches for achieving a range of objectives associated with high-performance green federal buildings. Achieving High-Performance Federal Facilities identifies examples of important initiatives taking place and available resources. The report explores how these examples could be used to help make sustainability the preferred choice at all levels of decision making. Achieving High-Performance Federal Facilities can serve as a valuable guide federal agencies with differing missions, types of facilities, and operating procedures.




Guideline for sustainable, energy efficient architecture and construction


Book Description

Nowadays there is an ever growing awareness regarding inevitable importance of sustainable development and its sub topics such as environment protection, ecology, resource saving, energy efficiency, etc. Due to massive and rapid development in recent years, this topic is getting more crucial in developing countries for instance Iran. It is getting more obvious that most of the development activities in absence of precise analysis of current conditions, as well as consequences of such activities, will lead to devastation of natural resources. The resources that is essential for further development of the country. Therefore, It is necessary to deal with sustainable development and environmental issues from the broader perspective, where includes items underlying immediate causes of environmental impact and at the same time tries to improve them. Sustainability or sustainable development is an umbrella covering many issues and aspects, among them energy, which is the key item, because energy consumption of buildings could have an impact on environment more than other aspects. Considering the huge portion of energy consumption in construction industry and housing sector, paying special attention to improvements in this sector is essential. Following this goal, the aim of this publication is to highlight procedures and practices which promote sustainable construction that is about creating a better quality of building and more healthy places to live in. Procedure of sustainable design includes various approaches and methods to develop energy efficient and environmentally sensitive buildings. Such approaches and methods demonstrate how to design, develop and construct all buildings in general and residential buildings in particular. Among various approaches towards sustainability, “Passive solar strategies” are well-known thanks to their cost efficiency and context friendliness of its principals and measures. The approach of passive design (architectural) strategies could be considered as the most applicable approach for resource saving and sustainability, thinking about special situation of Iran in particular and the Mena region in general. Such an approach requires paying special attention to climate, social characteristics of current or prospective inhabitants, topographical-physical characteristics as well as architectural characteristics of the understudied area. The relationships and interactions among society, building and its architecture and climate is “Site-specific” and dynamic. Therefore, they should be studied and properly analyzed throughout a specific project process for each certain place. The most expecting outcomes are precise definitions of passive design strategies, generally for buildings in MENA Region and especially for Iran. This publication is prepared in the young cities project framework, as the reasonable outcome of the developed pilot projects. The book starts with introducing the target group, related definitions and a brief overview on a conventional approach and its impact on environment. This chapter ends up with a brief review on benefits of applying sustainable guidelines. As the next step, after analyzing the climate and its relationship with thermal comfort and building, the main principals of passive solar design are introduced. The selected principles are: orientation, day-lighting, shading, thermal mass, insulation and ventilation. After a brief introduction of the principals, each one is explained in detail through its general principles and design strategies. Sustainable construction is examined based on its main pillars: construction systems, building elements, ecological building materials, and applicable measures for building physic. Construction systems are sorted out in six main groups as: block work- brick infill, block work- lightweight block infill, conventional panels, light weight steel frame, tunnel form structural system and precast modular. All selected systems are introduced based on following factors: brief description of the building concept, factory production, insulation, wastage, finishes, labor, installation, transport- lifting, services, hydronic cooling/ heating and safety. Then main building elements are examined. Here the elements are limited to: foundations, walls, floors, roofs, doors and windows. After a short description, different types of each element are introduced. Ecological building materials are investigated in chapter four. To find a base to compare, several common criteria are selected such as: embodied energy, pollution and waste, local production, reusability and recyclability, durability and interdependency. Applicable measures for building physic are examined in chapter five. The selected main measures are as follows: insulation, glazing, thermal mass, day-lighting, shading, ventilation and air-tightness. After describing the general principles of each measure, several recommendations in frame of design considerations are provided. Die enorme Bedeutung nachhaltiger Projekte wie Umweltschutz, Ökologie, sparsamer Umgang mit Rohstoffen, Energieeffizienz usw. dringt immer stärker in unser Bewusstsein. Aufgrund der massiven und rasanten Entwicklung in den Schwellenländern, z. B. Iran, gewinnen Umweltschutz und Nachhaltigkeit immer mehr an Relevanz. Ein einseitiges Wirtschaftswachstum, ohne Berücksichtigung ökologischer und klimatischer Bedingungen, verursacht die Zerstörung der Umwelt und Rohstoffe, Ressourcen, die für die weitere Entwicklung der Länder unverzichtbar sind. Es ist unumgänglich, sich umfassend mit nachhaltiger Entwicklung und ökologischen Aspekten auseinanderzusetzen, die unmittelbaren Auswirkungen auf die Umwelt zu erfassen und gleichzeitig Möglichkeiten einer Optimierung aufzuzeigen. Nachhaltigkeit und Umweltschutz erfassen eine Vielzahl von Themen und Aspekten, u. a. den Energieverbrauch; ein wesentlicher Faktor, da der Energieverbrach in Gebäuden den größten Einfluss auf die Umweltbilanz hat. In Anbetracht des enormen Energieverbrauchs in Bauwirtschaft und Wohnungsbau ist es unerlässlich, gerade in diesem Bereich eine Optimierung in der weiteren Entwicklung zu verfolgen. Diesem Ziel folgend, werden in dieser Publikation Verfahren und Methoden, für nachhaltige Bauweisen, unter Berücksichtigung einer besseren Bauqualität und gesundheitlicher Aspekte, erläutert. Die Maßnahmen nachhaltigen Designs beinhalten verschiedene Ansätze und Methoden, energieeffiziente und umweltfreundliche Gebäude zu entwickeln. Sie zeigen Entwurf, Konstruktion und bauliche Ausführung von Gebäuden im Allgemeinen und Wohngebäuden im speziellen. Neben den verschiedenen Ansätzen sind die „passive solar strategies“ die wohl namhaftesten Methoden, da diese sehr rentabel und daher für Bauherren attraktiv sind. Angesichts der speziellen Situation im Iran im Besonderen und der MENA-Region im Allgemeinen, könnten die passiven Design- (Architektur-) Strategien als eine der am besten anzuwendenden Methoden für Rohstoffeffizienz und Nachhaltigkeit betrachtet werden. Dies setzt eine besondere Berücksichtigung des dortigen Klimas, der sozialen Charakteristiken derzeitiger oder zukünftiger Einwohner als auch der topographisch-physischen und architektonischen Charakteristiken der betroffenen Region voraus. Beeinflussung und Beziehungen zwischen Gesellschaft, Gebäuden, Architektur und Klima sind „lokal spezifisch“ und dynamisch. Deshalb sollten diese Faktoren für jeden Standort neu geprüft und analysiert werden. Die Resultate dieser Analysen, allgemein für Gebäude in der MENA-Region und im Besonderen im Iran, zeigen deutlich die Überlegenheit von passiven Designstrategien. Diese Publikation ist das Resultat der entwickelten Pilotprojekte im Rahmen des Young Cities-Projektes. Sie beginnt mit der Vorstellung der Zielgruppe, relevanten Definitionen und einem kurzem Überblick des konventionellen Ansatzes und dessen Einfluss auf die Umwelt. Das Kapitel endet mit einem kurzen Rückblick über den Nutzen nachhaltiger Bauweise. Nach Analyse des Klimas und seine Beziehung zu thermischem Komfort und Gebäuden werden die wichtigsten Prinzipien passiver Solarenergie vorgestellt: Orientierung, Tageslicht, Schatten, thermale Masse, Isolierung und Ventilierung; ihre Grundlagen und Designstrategien detailliert erläutert. Nachhaltige Konstruktion und deren Hauptpfeiler, Bausysteme, Bauelemente, ökologische Bauelemente und anwendbare Maßnahmen für die Bauphysik, werden anschließend beleuchtet. Dabei wurden die Konstruktionssysteme in sechs Hauptgruppen gegliedert: Ziegeleinfüllung, leichtgewichtige Ziegeleinfüllung, klassische Füllwände, leichtgewichtige Stahlrahmen, tunnelförmige Struktursysteme und vorgefertigte Modelle. Anhand folgender Faktoren werden diese eingehend dargestellt: Baukonzepts, Fabrikproduktion, Isolierung, Abnutzung, Verarbeitung, Arbeitsaufwand, Installierung, Transport-Beförderung, Services, hydronische Kühlung/Heizung und Sicherheit. Die Hauptbauelemente wie Unterbau, Wände, Boden, Dächer, Türen und Fenster werden beschrieben und verschiedene Baureihen dieser vorgestellt. Das vierte Kapitel befasst sich mit ökologischen Baumaterialien. Um hierbei eine vergleichbare Basis zu finden, wurden gemeinsame Kriterien ausgewählt: graue Energie, Verschmutzung und Abfall, lokale Produktion, Wiederverwendung und Recycling, Nachhaltigkeit und Interdependenzen. Im fünften Kapitel werden anwendbare Maßnahmen für die Bauphysik, wie Isolierung, Lasur, Wärmemasse, Tageslicht, Schatten, Ventilation und Luftdichte, untersucht, deren Grundlagen beschrieben und Empfehlungen bezüglich der Gestaltung präsentiert




Building Better Buildings


Book Description