Design, Synthesis and Biological Evaluation of Chimeric Small Molecules


Book Description

Chimeric small molecules offer a wide array of potential biological functionalties where metabolic pathways may be redirected towards noncognate substrates for applications in biological research and pharmaceutical development. Here we explore the design of a class of chimeric small molecules known as proteolysis targeting chimeras through structure-activity relationships (SARs), provide synthetic methodology to access PROTAC linker variants, and biologically evaluate a suite of human carbonic anhydrase II (hCAII) degrading chimeric small molecules through mammalian cell culture and western blotting techniques.










Anticancer Agents


Book Description

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.




Introduction to Biological and Small Molecule Drug Research and Development


Book Description

Introduction to Biological and Small Molecule Drug Research and Development provides, for the first time, an introduction to the science behind successful pharmaceutical research and development programs. The book explains basic principles, then compares and contrasts approaches to both biopharmaceuticals (proteins) and small molecule drugs, presenting an overview of the business and management issues of these approaches. The latter part of the book provides carefully selected real-life case studies illustrating how the theory presented in the first part of the book is actually put into practice. Studies include Herceptin/T-DM1, erythropoietin (Epogen/Eprex/NeoRecormon), anti-HIV protease inhibitor Darunavir, and more. Introduction to Biological and Small Molecule Drug Research and Development is intended for late-stage undergraduates or postgraduates studying chemistry (at the biology interface), biochemistry, medicine, pharmacy, medicine, or allied subjects. The book is also useful in a wide variety of science degree courses, in post-graduate taught material (Masters and PhD), and as basic background reading for scientists in the pharmaceutical industry. For the first time, the fundamental scientific principles of biopharmaceuticals and small molecule chemotherapeutics are discussed side-by-side at a basic level Edited by three senior scientists with over 100 years of experience in drug research who have compiled the best scientific comparison of small molecule and biopharmaceuticals approaches to new drugs Illustrated with key examples of important drugs that exemplify the basic principles of pharmaceutical drug research and development




N-Heterocycles


Book Description

This book presents an overview of the recent advancements for the synthesis of small- and medium-sized azaheterocycles, including pyrroles, indoles, pyrimidines, pyridines, pyrrolidines, imidazoles, pyrazoles, pyrazolines, lactams, and 1,2,3-triazoles, which are significant scaffolds for compounds with pharmaceutical uses. The book also discusses various properties and performance attributes of azaheterocycles including their bioactivity and synthetic strategies. Given the contents, the book will be a valuable reference for students, researchers, and professionals interested in organic synthesis and medicinal chemistry.







Reactive Oxygen Species


Book Description

Reactive oxygen species (ROS) have been implicated in almost every human disease phenotype, without much, if any, therapeutic consequence foremost exemplified by the failure of the so-called anti-oxidants. This book is a game changer for the field and many clinical areas such as cardiology and neurology. The term ‘oxidative stress’ is abandoned and replaced with a systems medicine and network pharmacology-based mechanistic approach to disease. The ROS-related drugs discussed here target either ROS- forming or ROS -modifying enzymes for which there is strong clinical evidence. In addition, ROS targets are included as they jointly participate in causal mechanisms of disease. This approach is transforming the ROS field and represents a breakthrough in redox medicine indicating a path to patient benefit. In the coming years more targets and drugs may be discovered, but the approach will remain the same and this book will thus become, and for many years remain, the leading reference for ROSopathies and their treatment by network pharmacology. Chapter "Soluble Guanylate Cyclase Stimulators and Activators" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.