Designing Receptors for the Next Generation of Biosensors


Book Description

Despite achievements in the application of enzymes, antibodies and biological receptors to diagnostics and sensing, the last two decades have also witnessed the emergence of a number of alternative technologies based on synthetic chemistry. This volume shows how synthetic receptors can be designed with characteristics that make them attractive alternatives to biological molecules in the sensory and diagnostics fields, with contributions from leading experts in the area. Subjects covered include synthetic receptors for a range of biomolecules, the use of antimicrobial peptides for the detection of pathogenic microorganisms, the development of molecularly imprinted polymer (MIP) nanoparticles, the in silico design of MIPs and MIP-based sensors, and two chapters examining the development of sensors from an industrial point of view. The particular focus of all chapters is on practical aspects, either in the development process or the applications of the synthesized materials. This book will serve as an important reference work for business leaders and technology experts in the sensors and diagnostics sector.




Electrochemically Engineered Nanoporous Materials


Book Description

This book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.




Tools, Techniques and Protocols for Monitoring Environmental Contaminants


Book Description

Tools, Techniques and Protocols for Monitoring Environmental Contaminants describes information on the strategic integration of available monitoring methods with molecular techniques, with a focus on omics (DNA, RNA and protein based) and molecular imprinted polymer and nanomaterial based advanced biosensors for environmental applications. It discusses the most commonly practiced analytic techniques, such as HPLC, MS, GCMS and traditional biosensors, giving an overview of the benefits of advanced biosensors over commonly practiced methods in the rapid and reliable assessment of environmental contaminants. As environmental contaminants have become one of the serious concerns in terms of their rapid growth and monitoring in the environment, which is often limited due to costly and laborious methods, this book provides a comprehensive update on their removal, the challenges they create for environmental regulatory agencies, and their diverse effects on terrestrial and aquatic environments.




Molecularly Imprinted Catalysts


Book Description

Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology.Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry. - The first book in the field on molecularly imprinted catalysts (MIPs) - Provides a systematic background to selective catalysis, especially the basic concepts and key principles of the different MIP-based catalysts - Features state-of-the art presentation of preparation methods and applications of MIPs - Written by scientists from prestigious universities and industries across the world, and edited by veteran researchers in molecular imprinting and selective catalysis




Label-Free Biosensing


Book Description

This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices







Gas Sensing Fundamentals


Book Description

This volume, which addresses various basic sensor principles, covers micro gravimetric sensors, semiconducting and nano tube sensors, calorimetric sensors and optical sensors. Furthermore, the authors discuss recent developments in the related sensitive layers including new properties of nano structured metal oxide layers. They provide in-depth insights into the unique chemistry and signal generation of copper oxide in percolating sensors and present a variety of applications of functional polymers made possible by proper imprinting. Highlights of the subjects covered include: • requirements for high-temperature sensors • carbon nano tube sensors • new sensing model for nanostructured In2O3 • bio mimetic approach for semiconductor sensor-based systems • optical readout for inorganic and organic semiconductor sensors • concept of virtual multisensors to improve specificity and selectivity • calorimetric sensors for hydrogen peroxide detection • percolation effect-based sensors to implement dosimeters • imprinted polymer layers for bulk and surface acoustic wave sensors




Applications of Nanomaterials in Sensors and Diagnostics


Book Description

Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.




Autonomous Sensor Networks


Book Description

This volume surveys recent research on autonomous sensor networks from the perspective of enabling technologies that support medical, environmental and military applications. State of the art, as well as emerging concepts in wireless sensor networks, body area networks and ambient assisted living introduce the reader to the field, while subsequent chapters deal in depth with established and related technologies, which render their implementation possible. These range from smart textiles and printed electronic devices to implanted devices and specialized packaging, including the most relevant technological features. The last four chapters are devoted to customization, implementation difficulties and outlook for these technologies in specific applications.




Nanotechnology Tools for Infection Control


Book Description

Nanotechnology Tools for Infections Control: Scanning New Horizons on Next-Generation Therapies to Eradicate Pathogens and Fight Drug Resistance provides an overview of recent strategies to build nanotechnology platforms, with a specific focus on biocompatible and biodegradable nanosystems. Particular attention is given to responsive nanoparticles, which are able to sense and respond to specific external stimuli (e.g., temperature, pH). The book includes details of the rationale behind the design of the raw materials, synthetic procedures and characterization techniques. It also introduces a new generation of nanomaterials, commonly named as 'nanobots', which are able to self-propel in response to external stimuli. Subsequent sections of the book focus on the applications of nanosystems as an alternative approach to standard antibiotics. The chapters describe their pharmokinetic and dynamics within the body, their ability to cross biological barriers and how they distribute within different body compartments. In this respect, a dedicated section highlights the crucial role of the immune system, as well as of protein corona, in changing the nanoparticles retention within the body. Coverage is also given to describe how nanosystems access different cells and their intracellular trafficking. - Provides an overview of the current challenges in infection and immunity, showing how nanosystems can be used to meet them - Focuses on the translational potential of nanotechnology for both clinical and commercial applications - Assesses the major challenges of effectively using nanotechnology in immunology