Designing Two-stage Recycling Operations for Increased Usage of Undervalued Raw Materials


Book Description

Recycling provides a key strategy to move towards a more sustainable society by partially mitigating the impact of fast-growing material consumption. Recent advances in reprocessing technologies enable recyclers to incorporate low-quality secondary materials into higher quality finished products. Despite technological development, the use of these materials in the re-melting stage to produce final alloys is still limited. This thesis addresses this issue by raising the following question: given the complexity of the reprocessing operational environment, what is the most effective way to manage two-stage recycling operations to maximize the usage of low-quality secondary materials? This thesis answers this question for two systems: when outputs from the reprocessing stage can be delivered (1) as sows and (2) as liquid metals to the re-melting stage. In the first system, the main barrier to use of these materials is the highly variable quality of raw materials. This study suggests the use of data mining as a strategy to manage raw materials with uncertain quality using existing data from the recycling industry. A clustering analysis provides criteria for grouping raw materials by recognizing the pattern of varied compositions. This grouping (binning) strategy using the clustering analysis increases the homogeneity and distinctiveness of uncertain raw materials, allowing recyclers to increase their usage while maintaining minimum information about them. In the second system, significant energy cost can be saved by immediately incorporating reprocessed secondary raw materials as liquid metal into final alloy production. In this case, the coordination between the reprocessing stage and the re-melting stage is critical. This study suggests integrated production planning for two stages. The mathematical pooling problem is used to model two-stage recycling operations. Integrated planning across the two operations can adjust batch plans and design intermediate products by reflecting demand information of final products. This approach maximizes the use of intermediate products as liquid in the remelting stage and, therefore, lowers energy cost significantly. Both strategies are applied to industrial cases of aluminum recycling to explore the benefits and limitations. The results indicate the potential opportunity to significantly reduce material costs and to increase the use of undervalued secondary raw materials.




Integrated Planning for Design and Production in Two-Stage Recycling Operations


Book Description

Recycling is a key strategy to reduce the environmental impact associated with industrial resource use. Recent improvements in materials recovery technologies offer the possibility for recouping additional value from recycling. However, incorporation of secondary raw materials into production may be constrained by operational complexity in two-stage blending processes. In this paper, we derive a analytical solution to demonstrate the importance of integrated planning (IP) approaches for two-stage blending operations in recycling. Our results suggest that the quality of materials obtained from the first stage strongly influences performance in the second stage. Current disjointed planning (DP) approaches in the recycling industry, where individual stages are independently planned without decision-making about intermediate blend design, overlook this interaction and, therefore, make conservative use of lower quality materials. We develop an IP model using a formulation of the pooling problem and apply it to an industrial-scale aluminum recycling facility located in Europe. The results suggest that the IP model can reduce material costs by more than 5%, for the case examined, and can enable increased use of undervalued raw materials. This study also investigates the impact of variations in operational conditions on the benefits of IP.




REWAS 2016


Book Description

Proceedings from a 2016 sustainability symposium Information from REWAS 2016 proceedings were collected and published in REWAS 2016: Towards Materials Resource Sustainability. This collection covers the proceedings of the symposium sponsored by the Recycling and Environmental Technologies Committee; the Materials and Society Committee; the Extracting & Processing Division; and the Light Metals Division of the Minerals, Metals and Materials Society. Topics covered include: enabling and understanding the sustainability related to ferrous and non-ferrous metals processing; batteries; rare earth element applications; and building materials. At REWAS 2016, materials professionals exchanged ideas with other researchers and stakeholders to outline a path toward a resource-efficient society.




Recycling Production Designs


Book Description

The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product. Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling center production design based on maximizing liquid recycled product incorporation and minimizing cast sows. The long term production optimization model was used to evaluate the theoretical viability of the proposed two stage scrap and aluminum dross reprocessing operation including the impact of reducing coordination on model performance. Reducing the coordination between the recycling center and downstream remelters by reducing the number of recycled products from ten to five resulted in only 1.3% less secondary material incorporated into downstream production. The dynamic simulation tool was used to evaluate the performance of the calculated recycling center production plan when resolved on a daily timeframe for varying levels of operational flexibility. The dynamic simulation revealed the optimal performance corresponded to the fixed recipe with flexible production daily optimization model formulation. Calculating recycled product characteristics using the proposed simulation optimization method increased profitability in cases of uncertain downstream remelter production and expensive aluminum dross and post-consumed secondary materials.




Aluminum Recycling, Second Edition


Book Description

What makes this book unique is a specific focus on aluminum recovery, rather than just recycling in general. It also offers an integrated discussion of scrap recovery and re-melting operations and includes economic as well as technical elements of recycling. Important topics include a discussion of the scrap aluminum marketplace and how secondary aluminum is collected and sorted, the design and operation of furnaces for melting scrap, the refining of molten aluminum, and the recovery and processing of dross from re-melting operations. This second edition features more information on aluminum scrap pricing and the economics of recycling, the analysis of dross processing methods currently in use by the industry, and drosses produced. The book has been updated throughout to include the most up-to-date information.







Design for Environmental Sustainability


Book Description

This volume is a technical and operative contribution to the United Nations "Decade on Education for Sustainable Development" (2005-2014), aiding the development of a new generation of designers, responsible and able in the task of designing environmentally sustainable products. The book provides a comprehensive framework and a practical tool to support the design process. This is an important text for those interested in the product development processes.




Municipal Solid Waste Management in Asia and the Pacific Islands


Book Description

Solid waste management issues, technologies and challenges are dynamic. More so, in developing and transitory nations in Asia. This book, written by Asian experts in solid waste management, explores the current situation in Asian countries including Pacific Islands. There are not many technical books of this kind, especially dedicated to this region of the world. The chapters form a comprehensive, coherent investigation in municipal solid waste (MSW) management, including, definitions used, generation, sustainable waste management system, legal framework and impacts on global warming. Several case studies from Asian nations are included to exemplify the real situation experienced. Discussions on MSW policy in these countries and their impacts on waste management and minimization (if any) are indeed an eye-opener. Undoubtedly, this book would be a pioneer in revealing the latest situation in the Asian region, which includes two of the world’s most dynamic nations in the economic growth. It is greatly envisaged to form an excellent source of reference in MSW management in Asia and Pacific Islands. This book will bridge the wide gap in available information between the developed and transitory/developing nations.




Our Common Future


Book Description