Chemical Kinetic Modeling of Jet Fuel Surrogates


Book Description

Jet fuels, like typical transportation fuels, are mixtures of several hundreds of compounds belonging to different hydrocarbon classes. Their composition varies from one source to another, and only average fuel properties are known at best. In order to understand the combustion characteristics of the real fuels, and to address the problem of combustion control, computational studies using a detailed kinetic model to represent the real fuel, serves as a highly useful tool. However, the complexity of the real fuels makes it infeasible to simulate their combustion characteristics directly, requiring a simplified fuel representation to circumvent this difficulty. Typically, the real fuels are modeled using a representative surrogate mixture, i.e. a well-defined mixture comprised of a few components chosen to mimic the desired physical and chemical properties of the real fuel under consideration. Surrogates have been proposed for transportation fuels, including aviation fuels, and several kinetic modeling attempts for the proposed surrogates have also been made. However, (i) the fundamental kinetics of individual fuels, which make up the surrogate mixtures is not understood well, (ii) their combustion behavior at low through high temperatures has not been comprehensively validated, and this directly impacts the (iii) reliability of the multi-component reaction mechanism for a surrogate made up of these individual components. The present work is aimed at addressing the afore-mentioned concerns. The objective of this work is to develop a single, reliable kinetic model that can describe the oxidation of a few representative fuels, which are important components of transportation fuel surrogates, and thereby capture the specificities of the simpler, but still multi-component surrogates. The reaction mechanism is intended to well-represent the individual components as well as a multi-component surrogate for jet fuel made up of these fuel components. Further, this reaction mechanism is desired to be applicable at low through high temperatures, and be compact enough that chemical kinetic analysis is feasible. First, a representative compound for each of the major hydrocarbon classes found in the real jet fuel is identified. A surrogate for jet fuels is chosen to be comprised of n-dodecane (to represent normal alkanes), methylcyclohexane (to represent cyclic alkanes), and m-xylene (to represent aromatics). A Component Library approach is invoked for the development of a single, consistent, and reliable chemical scheme to accurately model this multi-component surrogate mixture. The chemical model is assembled in stages, starting with a base model and adding to it sub-mechanisms for the individual components of the surrogate, namely m- xylene, n-dodecane, and methylcyclohexane. The chemical model is validated comprehensively every time the oxidation pathways of a new component are incorporated into it and the experimental data is well captured by the simulations. In addition to the jet fuel surrogate, with the number of fuels described in the proposed reaction mechanism, a surrogate for the alternative Fischer-Tropsch fuels is also considered. Surrogates are defined for jet fuels and Fischer-Tropsch fuels by matching target properties important for combustion applications between the surrogate and the real fuel. The simulations performed using the proposed reaction mechanism, with the surrogates defined as fuels, are compared against global targets, such as ignition delays, flow reactor profiles, and flame speed measurements for representative jet fuels and Fischer-Tropsch fuels. The computations show promising agreement with these experimental data sets. The proposed reaction mechanism is well-suited to be used in real flow simulations of jet fuels. The proposed reaction mechanism has the ability to describe the kinetics of n- heptane, iso-octane, substituted aromatics, n-dodecane, and methylcyclohexane, all of which are important components of transportation fuel surrogates. Considering the large number of hydrocarbons whose kinetics are well described by this reaction mechanism, there are avenues for this reaction mechanism to be used to model other transportation fuels, such as gasoline, diesel, and alternative fuels, in addition to the jet and Fischer-Tropsch fuels discussed in the present study.




Detailed and Simplified Chemical Kinetics of Aviation Fuels and Surrogates


Book Description

The removal of the high Damkohler number assumption from modeling approaches is essential for the computational simulation of combusting flows where strong direct kinetic effects are present. Examples of relevant physical phenomena include flame extinction and re-light as well as pollutant emissions. Calculation methods (e.g. LES/FMDF) aimed at including such effects are computationally demanding and simplified reaction mechanisms that represent the desired chemical features with sufficient accuracy are required. Difficulties are augmented for aviation fuels due to the wide range of fuel components and sufficiently accurate detailed surrogate mechanisms are required for the subsequent derivation of further simplifications under actual operating conditions prior to the implementation into calculation methods for turbulent flows. The present paper addresses the issue of substituted aromatics and outlines a reaction class based route to the derivation of detailed chemical kinetic mechanisms. The example given considers the toluene/1-methyl naphthalene system.







Detailed Chemical Kinetic Models for Large N-alkanes and Iso-alkanes Found in Conventional and F-T Diesel Fuels


Book Description

Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.




Cleaner Combustion


Book Description







Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels


Book Description

N-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.




Modeling of Chemical Reactions


Book Description

Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful. - A solid introduction to kinetics - Material on computational quantum chemistry, an important new area for kinetics - Contains a chapter on construction of mechanisms, an approach only found in this book