Applied Engineering Analysis


Book Description

A resource book applying mathematics to solve engineering problems Applied Engineering Analysis is a concise textbookwhich demonstrates how toapply mathematics to solve engineering problems. It begins with an overview of engineering analysis and an introduction to mathematical modeling, followed by vector calculus, matrices and linear algebra, and applications of first and second order differential equations. Fourier series and Laplace transform are also covered, along with partial differential equations, numerical solutions to nonlinear and differential equations and an introduction to finite element analysis. The book also covers statistics with applications to design and statistical process controls. Drawing on the author's extensive industry and teaching experience, spanning 40 years, the book takes a pedagogical approach and includes examples, case studies and end of chapter problems. It is also accompanied by a website hosting a solutions manual and PowerPoint slides for instructors. Key features: Strong emphasis on deriving equations, not just solving given equations, for the solution of engineering problems. Examples and problems of a practical nature with illustrations to enhance student’s self-learning. Numerical methods and techniques, including finite element analysis. Includes coverage of statistical methods for probabilistic design analysis of structures and statistical process control (SPC). Applied Engineering Analysis is a resource book for engineering students and professionals to learn how to apply the mathematics experience and skills that they have already acquired to their engineering profession for innovation, problem solving, and decision making.




Intermediate Algebra 2e


Book Description




Trace Ideals and Their Applications


Book Description

From a review of the first edition: Beautifully written and well organized ... indispensable for those interested in certain areas of mathematical physics ... for the expert and beginner alike. The author deserves to be congratulated both for his work in unifying a subject and for showing workers in the field new directions for future development. --Zentralblatt MATH This is a second edition of a well-known book on the theory of trace ideals in the algebra of operators in a Hilbert space. Because of the theory's many different applications, the book was widely used and much in demand. For this second edition, the author has added four chapters on the closely related theory of rank one perturbations of self-adjoint operators. He has also included a comprehensive index and an addendum describing some developments since the original notes were published. This book continues to be a vital source of information for those interested in the theory of trace ideals and in its applications to various areas of mathematical physics.




Topics in Multidimensional Linear Systems Theory


Book Description

The past few decades have witnessed an increasing interest in the field of multidimensional systems theory. This is concerned with systems whose trajectories depend not on one single variable (usually interpreted as time or frequency), but on several independent variables, such as the coordinates of an image. The behavioural approach introduced by J. C. Willems provides a particularly suitable framework for developing a linear systems theory in several variables. The book deals with the classical concepts of autonomy, controllability, observability, and stabilizability. All the tests and criteria given are constructive in the sense that algorithmic versions may be implemented in modern computer algebra systems, using Gröbner basis techniques. There is a close connection between multidimensional systems theory and robust control of one-dimensional systems with several uncertain parameters. The central link consists in the basic tool of linear fractional transformations. The book concludes with examples from the theory of electrical networks.







Square Matrices of Order 2


Book Description

This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, and engineering; therefore the readership of this book is intended to be broad: high school students wishing to learn the fundamentals of matrix theory, first year students who like to participate in mathematical competitions, graduate students who want to learn more about an application of a certain technique, doctoral students who are preparing for their prelim exams in linear algebra, and linear algebra instructors. Chapters 1–3 complement a standard linear algebra course. Pure and applied mathematicians who use matrix theory for their applications will find this book useful as a refresher. In fact, anyone who is willing to explore the methodologies discussed in this book and work through a collection of problems involving matrices of order 2 will be enriched.




Integral Closure


Book Description

This book gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. It gives a comprehensive treatment of Rees algebras and multiplicity theory while pointing to applications in many other problem areas. Its main goal is to provide complexity estimates by tracking numerically invariants of the structures that may occur.




Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications


Book Description

Articles in this volume are based on talks given at the International Conference on Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications. The conference provided researchers in mathematics with the opportunity to discuss new developments in these rapidly growing fields. This book contains several excellent articles, both expository and original, with new and significant results. It is suitable for graduate students and researchers interested in Ring Theory,Diagram Algebras and related topics.




Determinantal Rings


Book Description

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.