Development of Scalable Approaches to Neutrino Mass Measurement with The Project 8 Experiment


Book Description

Neutrinos are fundamental particles in the standard model and play an important role in the current understanding of the universe; however, the mass of the neutrino one of the most fundamental parameters for any particle, is currently unknown. This fact represents a gaping hole in our current knowledge of the universe that may provide clues to the energy scale of physics beyond the standard model. This dissertation summarizes research and development as a member of the Project 8 collaboration towards an experiment to measure the neutrino mass with a sensitivity below $50$~$\mathrm{meV}/\mathrm{c}^2$, which is an order of magnitude less than the most sensitive direct measurements of the neutrino mass to date. Project 8 will perform this measurement using Cyclotron Radiation Emission Spectroscopy (CRES) to measure the beta-decay endpoint spectrum of atomic tritium. I present an analysis of the signal reconstruction performance of an antenna array system designed to perform large-scale CRES measurements in cubic-meter volumes. Next, I discuss an approach to calibrating an antenna-based CRES experiment using a unique probe antenna designed to mimic radiation from CRES events. Finally, I present design studies for a resonant cavity that could be used to perform a CRES experiment with atomic tritium at multi-cubic-meter scales.




Constraining the Neutrino Mass Using Cyclotron Radiation Emission Spectroscopy


Book Description

The existing prototype to demonstrate the viability of the Cyclotron Radiation Emission Spectroscopy (CRES) has been upgraded to incorporate tritium compatibility. The spectrum of the conversion electrons from 83mKr has been measured with great linearity and a precision of 2 eV over the energy range of 17-32. The first tritium beta-spectrum using CRES has also been measured to conclude an endpoint value of E0 = 18574.1 ± (17.2)stat. + (+12.5 -21.1)sys eV. The recorded tritium spectrum is analyzed to set the first CRES limit on the neutrino mass, m beta




Techniques for Direct Neutrino Mass Measurement Utilizing Tritium [beta]-decay


Book Description

This thesis documents efforts performed in the service to two direct neutrino mass experiments, namely KATRIN at the Karlsruhe Institute of Technology in Karlsruhe, Germany and Project8 at the University of Washington in Seattle. These experiments aim to utilize a measurement of the shape of the endpoint of the tritium beta decay spectrum to determine the neutrino mass, which is a technique that relies only on basic kinematics and enjoys a long and distinguished history. Additionally, these experiments utilize classical electrodynamics in their analysis of the beta electron spectrum, at KATRIN through the use of a MAC-E filter and at Project8 through magnetic confinement of electrons within a waveguide and the measurement of their weakly energy dependent relativistic cyclotron frequencies, which is an entirely new technique. In the thesis, both experiments are described in detail with particular attention paid to the components involved in energy analysis. Exploiting these experiments' similarities, an extensive simulation package called KASSIOPEIA has been prepared, which is the principal effort described herein. KASSIOPEIA is applied to both KATRIN and Project8, which in the case of KATRIN delivers valuable and detailed information regarding the performance of the electrostatic spectrometers used there, in particular the main and monitor spectrometers. In its application to Project8, KASSIOPEIA is used to determine precise electron trajectories, which can be used to simulate the signals these electrons induce in the waveguide. This thesis also includes experimental results obtained at the monitor spectrometer of the KATRIN experiment, which demonstrate the efficacy of the magnetic pulse technique at ejecting problematic stored electrons at MAc-E filters. The magnetic pulse technique relies on using a set of external aircoils surrounding a MAC-E filter to reverse and rapidly restore the magnetic field in the spectrometer symmetry plane, causing stored particle to hit the vessel walls. Owing to its success as demonstrated in this work, this technique will be employed at the main spectrometer during the upcoming data taking run at KATRIN. Finally, this thesis presents some results from the inaugural run at Project8, which showed that the theretofore undemonstrated technique, named Cyclotron Radiation Emission Spectroscopy (CRES), is capable of detecting the signal a single electron excites in a waveguide as it its magnetically trapped inside. In the history of tritium based neutrino mass experiments this technique is unique, and presents an entirely complimentary approach to that used at KATRIN. Based as it is on a frequency measurement, the technique shows great promise to mature into an extremely high precision form of electron spectroscopy, with many applications throughout nuclear physics.




The Physics Associated with Neutrino Masses


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Handbook of Nuclear Physics


Book Description

This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.







Neutrino Cosmology


Book Description

A self-contained guide to the role played by neutrinos in the Universe and how their properties influence cosmological and astrophysical observations.




Event Classification in Liquid Scintillator Using PMT Hit Patterns


Book Description

The search for neutrinoless double beta decay is one of the highest priority areas in particle physics today; it could provide insights to the nature of neutrino masses (currently not explained by the Standard Model) as well as how the universe survived its early stages. One promising experimental approach involves the use of large volumes of isotope-loaded liquid scintillator, but new techniques for background identification and suppression must be developed in order to reach the required sensitivity levels and clearly distinguish the signal. The results from this thesis constitute a significant advance in this area, laying the groundwork for several highly effective and novel approaches based on a detailed evaluation of state-of-the-art detector characteristics. This well written thesis includes a particularly clear and comprehensive description of the theoretical motivations as well as impressively demonstrating the effective use of diverse statistical techniques. The professionally constructed signal extraction framework contains clever algorithmic solutions to efficient error propagation in multi-dimensional space. In general, the techniques developed in this work will have a notable impact on the field.




Neutrino Mass


Book Description

Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.