Deterministic Network Calculus


Book Description

Deterministic network calculus is a theory based on the (min,plus) algebra. Its aim is to compute worst-case performance bounds in communication networks. Our goal is to provide a comprehensive view of this theory and its recent advances, from its theoretical foundations to its implementations. The book is divided into three parts. The first part focuses on the (min,plus) framework and its algorithmic aspects. The second part defines the network calculus model and analyzes one server in isolation. Different service and scheduling policies are discussed, particularly when data is packetized. The third part is about network analyses. Pay burst only once and pay multiplexing only once phenomena are exhibited, and different analyses are proposed and compared. This includes the linear programming approaches that compute tight performance bounds. Finally, some partial results on the stability are detailed.




Network Calculus


Book Description

Network Calculus is a set of recent developments that provide deep insights into flow problems encountered in the Internet and in intranets. The first part of the book is a self-contained, introductory course on network calculus. It presents the core of network calculus, and shows how it can be applied to the Internet to obtain results that have physical interpretations of practical importance to network engineers. The second part serves as a mathematical reference used across the book. It presents the results from Min-plus algebra needed for network calculus. The third part contains more advanced material. It is appropriate reading for a graduate course and a source of reference for professionals in networking by surveying the state of the art of research and pointing to open problems in network calculus and its application in different fields, such as mulitmedia smoothing, aggegate scheduling, adaptive guarantees in Internet differential services, renegotiated reserved services, etc.




Deterministic Network Calculus


Book Description

Deterministic network calculus is a theory based on the (min,plus) algebra. Its aim is to compute worst-case performance bounds in communication networks. Our goal is to provide a comprehensive view of this theory and its recent advances, from its theoretical foundations to its implementations. The book is divided into three parts. The first part focuses on the (min,plus) framework and its algorithmic aspects. The second part defines the network calculus model and analyzes one server in isolation. Different service and scheduling policies are discussed, particularly when data is packetized. The third part is about network analyses. Pay burst only once and pay multiplexing only once phenomena are exhibited, and different analyses are proposed and compared. This includes the linear programming approaches that compute tight performance bounds. Finally, some partial results on the stability are detailed.




Stochastic Network Calculus


Book Description

Network calculus is a theory dealing with queuing systems found in computer networks. Its focus is on performance guarantees. Central to the theory is the use of alternate algebras such as the min-plus algebra to transform complex network systems into analytically tractable systems. To simplify the ana- sis, another idea is to characterize tra?c and service processes using various bounds. Since its introduction in the early 1990s, network calculus has dev- oped along two tracks—deterministic and stochastic. This book is devoted to summarizing results for stochastic network calculus that can be employed in the design of computer networks to provide stochastic service guarantees. Overview and Goal Like conventional queuing theory, stochastic network calculus is based on properly de?ned tra?c models and service models. However, while in c- ventional queuing theory an arrival process is typically characterized by the inter-arrival times of customers and a service process by the service times of customers, the arrival process and the service process are modeled in n- work calculus respectively by some arrival curve that (maybe probabilis- cally) upper-bounds the cumulative arrival and by some service curve that (maybe probabilistically) lower-bounds the cumulative service. The idea of usingboundstocharacterizetra?candservicewasinitiallyintroducedfor- terministic network calculus. It has also been extended to stochastic network calculus by exploiting the stochastic nature of arrival and service processes.




Network Calculus


Book Description

Network Calculus is a set of recent developments that provide deep insights into flow problems encountered in the Internet and in intranets. The first part of the book is a self-contained, introductory course on network calculus. It presents the core of network calculus, and shows how it can be applied to the Internet to obtain results that have physical interpretations of practical importance to network engineers. The second part serves as a mathematical reference used across the book. It presents the results from Min-plus algebra needed for network calculus. The third part contains more advanced material. It is appropriate reading for a graduate course and a source of reference for professionals in networking by surveying the state of the art of research and pointing to open problems in network calculus and its application in different fields, such as mulitmedia smoothing, aggegate scheduling, adaptive guarantees in Internet differential services, renegotiated reserved services, etc.




Deterministic Network Calculus


Book Description

Deterministic network calculus is a theory based on the (min,plus) algebra. Its aim is to compute worst-case performance bounds in communication networks. Our goal is to provide a comprehensive view of this theory and its recent advances, from its theoretical foundations to its implementations. The book is divided into three parts. The first part focuses on the (min,plus) framework and its algorithmic aspects. The second part defines the network calculus model and analyzes one server in isolation. Different service and scheduling policies are discussed, particularly when data is packetized. The third part is about network analyses. Pay burst only once and pay multiplexing only once phenomena are exhibited, and different analyses are proposed and compared. This includes the linear programming approaches that compute tight performance bounds. Finally, some partial results on the stability are detailed.







Mathematical Foundations of Computer Networking


Book Description

Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory




Performance Guarantees in Communication Networks


Book Description

Providing performance guarantees is one of the most important issues for future telecommunication networks. This book describes theoretical developments in performance guarantees for telecommunication networks from the last decade. Written for the benefit of graduate students and scientists interested in telecommunications-network performance this book consists of two parts. The first introduces the recently-developed filtering theory for providing deterministic (hard) guarantees, such as bounded delay and queue length. The filtering theory is developed under the min-plus algebra, where one replaces the usual addition with the min operator and the usual multiplication with the addition operator. As in the classical linear system theory, the filtering theory treats an arrival process (or a departure process ) as a signal and a network element as a system. Network elements, including traffic regulators and servers, can be modelled as linear filters under the min-plus algebra, and they can be joined by concatenation, "filter bank summation", and feedback to form a composite network element. The problem of providing deterministic guarantees is equivalent to finding the impulse response of composite network elements. This section contains material on: - (s, r)-calculus - Filtering theory for deterministic traffic regulation, service guarantees and networks with variable-length packets - Traffic specification - Networks with multiple inputs and outputs - Constrained traffic regulation The second part of the book addresses stochastic (soft) guarantees, focusing mainly on tail distributions of queue lengths and packet loss probabilities and contains material on: - (s(q), r(q))-calculus and q-envelope rates - The large deviation principle - The theory of effective bandwidth The mathematical theory for stochastic guarantees is the theory of effective bandwidth. Based on the large deviation principle, the theory of effective bandwidth provides approximations for the bandwidths required to meet stochastic guarantees for both short-range dependent inputs and long-range dependent inputs.




Systems Modeling: Methodologies and Tools


Book Description

This book covers ideas, methods, algorithms, and tools for the in-depth study of the performance and reliability of dependable fault-tolerant systems. The chapters identify the current challenges that designers and practitioners must confront to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies. Topics include network calculus, workload and scheduling; simulation, sensitivity analysis and applications; queuing networks analysis; clouds, federations and big data; and tools. This collection of recent research exposes system researchers, performance analysts, and practitioners to a spectrum of issues so that they can address these challenges in their work.