Deterministic Sampling for Nonlinear Dynamic State Estimation


Book Description

The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account.




Deterministic Sampling for Nonlinear Dynamic State Estimation


Book Description

The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Nonlinear Estimation


Book Description

Nonlinear Estimation: Methods and Applications with Deterministic Sample Points focusses on a comprehensive treatment of deterministic sample point filters (also called Gaussian filters) and their variants for nonlinear estimation problems, for which no closed-form solution is available in general. Gaussian filters are becoming popular with the designers due to their ease of implementation and real time execution even on inexpensive or legacy hardware. The main purpose of the book is to educate the reader about a variety of available nonlinear estimation methods so that the reader can choose the right method for a real life problem, adapt or modify it where necessary and implement it. The book can also serve as a core graduate text for a course on state estimation. The book starts from the basic conceptual solution of a nonlinear estimation problem and provides an in depth coverage of (i) various Gaussian filters such as the unscented Kalman filter, cubature and quadrature based filters, Gauss-Hermite filter and their variants and (ii) Gaussian sum filter, in both discrete and continuous-discrete domain. Further, a brief description of filters for randomly delayed measurement and two case-studies are also included. Features: The book covers all the important Gaussian filters, including filters with randomly delayed measurements. Numerical simulation examples with detailed matlab code are provided for most algorithms so that beginners can verify their understanding. Two real world case studies are included: (i) underwater passive target tracking, (ii) ballistic target tracking. The style of writing is suitable for engineers and scientists. The material of the book is presented with the emphasis on key ideas, underlying assumptions, algorithms, and properties. The book combines rigorous mathematical treatment with matlab code, algorithm listings, flow charts and detailed case studies to deepen understanding.




Event-Trigger Dynamic State Estimation for Practical WAMS Applications in Smart Grid


Book Description

This book describes how dynamic state estimation application in wide-area measurement systems (WAMS) are crucial for power system reliability, to acquire precisely power system dynamics. The event trigger DSE techniques described by the authors provide a design balance between the communication rate and estimation performance, by selectively sending the innovational data. The discussion also includes practical problems for smart grid applications, such as the non-Gaussian process/measurement noise, packet dropout, computation burden of accurate DSE, robustness to the system variation, etc. Readers will learn how the event trigger DSE can facilitate the effective reduction of communication rates, with guaranteed accuracy under a variety of practical conditions in smart grid applications.




Advances in Heuristic Signal Processing and Applications


Book Description

There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a special emphasis on heuristic iterative optimization methods employing modern evolutionary and swarm intelligence based techniques. The applications considered are in domains such as communications engineering, estimation and tracking, digital filter design, wireless sensor networks, bioelectric signal classification, image denoising, and image feature tracking. The book presents interesting, state-of-the-art methodologies for solving real-world problems and it is a suitable reference for researchers and engineers in the areas of heuristics and signal processing.




Directional Estimation for Robotic Beating Heart Surgery


Book Description

In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart.







Tracking Extended Objects in Noisy Point Clouds with Application in Telepresence Systems


Book Description

We discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurements to their sources on the object, the shape itself might be unknown a priori, and due to occlusion effects, only parts of the object are visible at a given time. We propose an approach to track the parameters of arbitrary objects, which provides new solutions to the above challenges, and marks a significant advance to the state of the art.




Computational Intelligence and Intelligent Systems


Book Description

This book constitutes the refereed proceedings of the 6th International Symposium on Intelligence Computation and Applications, ISICA 2012, held in Wuhan, China, in October 2012. The 72 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; combinatorial and numerical optimization; communications and computer networks; data mining; evolutionary multi-objective and dynamic optimization; intelligent computation, intelligent learning systems; neural networks; real-world applications.




Tracking Extended Objects with Active Models and Negative Measurements


Book Description

Extended object tracking deals with estimating the shape and pose of an object based on noisy point measurements. This task is not straightforward, as we may be faced with scarce low-quality measurements, little a priori information, or we may be unable to observe the entire target. This work aims to address these challenges by incorporating ideas from active contours and exploiting information from negative measurements, which tell us where the target cannot be.