Detrital thermochronology
Author : Matthias Bernet
Publisher : Geological Society of America
Page : 134 pages
File Size : 12,35 MB
Release : 2004-01-01
Category : Science
ISBN : 9780813723785
Author : Matthias Bernet
Publisher : Geological Society of America
Page : 134 pages
File Size : 12,35 MB
Release : 2004-01-01
Category : Science
ISBN : 9780813723785
Author : Marco G. Malusà
Publisher :
Page : 393 pages
File Size : 48,34 MB
Release : 2019
Category : Geochronometry
ISBN : 9783319894201
This book is focused on the basics of applying thermochronology to geological and tectonic problems, with the emphasis on fission-track thermochronology. It is conceived for relatively new practitioners to thermochronology, as well as scientists experienced in the various methods. The book is structured in two parts. Part I is devoted to the fundamentals of the fission-track method, to its integration with other geochronologic methods, and to the basic principles of statistics for fission-track dating and sedimentology applied to detrital thermochronology. Part I also includes the historical development of the technique and thoughts on future directions. Part II is devoted to the geological interpretation of the thermochronologic record. The thermal frame of reference and the different approaches for the interpretation of fission-track data within a geological framework of both basement and detrital studies are discussed in detail. Separate chapters demonstrate the application of fission-track thermochronology from various perspectives (e.g., tectonics, petrology, stratigraphy, hydrocarbon exploration, geomorphology), with other chapters on the application to basement rocks in orogens, passive continental margins and cratonic interiors, as well as various applications of detrital thermochronology.
Author : Marco G. Malusà
Publisher : Springer
Page : 395 pages
File Size : 20,6 MB
Release : 2018-07-14
Category : Science
ISBN : 3319894218
This book is focused on the basics of applying thermochronology to geological and tectonic problems, with the emphasis on fission-track thermochronology. It is conceived for relatively new practitioners to thermochronology, as well as scientists experienced in the various methods. The book is structured in two parts. Part I is devoted to the fundamentals of the fission-track method, to its integration with other geochronologic methods, and to the basic principles of statistics for fission-track dating and sedimentology applied to detrital thermochronology. Part I also includes the historical development of the technique and thoughts on future directions. Part II is devoted to the geological interpretation of the thermochronologic record. The thermal frame of reference and the different approaches for the interpretation of fission-track data within a geological framework of both basement and detrital studies are discussed in detail. Separate chapters demonstrate the application of fission-track thermochronology from various perspectives (e.g., tectonics, petrology, stratigraphy, hydrocarbon exploration, geomorphology), with other chapters on the application to basement rocks in orogens, passive continental margins and cratonic interiors, as well as various applications of detrital thermochronology.
Author : Marc Jolivet
Publisher : John Wiley & Sons
Page : 260 pages
File Size : 49,47 MB
Release : 2024-10-07
Category : Science
ISBN : 1394325800
Low-temperature thermochronology has become an essential tool when studying near-surface geological processes. Time-temperature constraints are vital to quantify and describe a large variety of geological processes, such as relief building, erosion and sedimentation or the maturation of organic matter in sedimentary basins. After a brief history covering the discovery of fission tracks to their first applications in geochronology, Fission-track Thermochronology presents a complete description of not only the fission-track, but also the (U Th Sm)/He thermochronology approaches, both on basement rocks and on sediments. Firstly, the physical and chemical processes that underlie these techniques are addressed, and the analytical methods are described in detail. A particular focus is placed on the latest developments, such as the use of laser-ablation ICP-MS, and a whole chapter is dedicated to statistical modeling of the data. Finally, numerous examples of applications to geological questions will provide the reader with a comprehensive overview of the possibilities of low temperature thermochronology in solving geological and geomorphological questions.
Author : Jean Braun
Publisher : Cambridge University Press
Page : 31 pages
File Size : 23,8 MB
Release : 2006-05-04
Category : Science
ISBN : 113945028X
Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. First published in 2006, Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9781107407152 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included.
Author : Frank Lisker
Publisher : Geological Society of London
Page : 364 pages
File Size : 13,19 MB
Release : 2009
Category : Science
ISBN : 9781862392854
Thermochronology - the use of temperature-sensitive radiometric dating meth-ods to reconstruct the thermal histories of rocks - has proved to be an important means of constraining a wide variety of geological processes. Fission track and (U-Th)/He analyses of apatites, zircons and titanites are the best-established methods for reconstructing such histories over time scales of millions to hun-dreds of millions of years. The papers published in this volume are divided into two sections. The first sec-tion on 'New approaches in thermochronology', presents the most recent ad-vances of existing thermochronological methods and demonstrates the progress in the development of alternative thermochronometers and modelling tech-niques. The second section, 'Applied thermochronology', comprises original papers about denudation, long-term landscape evolution and detrital sources from the European Alps, northwestern Spain, the Ardennes, the Bohemian Massif, Fenno-scandia and Corsica. It also includes case studies from the Siberian Altai, Mozam-bique, South Africa and Dronning Maud Land (East Antarctica) and reports an ancient thermal anomaly within a regional fault in Japan.
Author : Peter W. Reiners
Publisher : John Wiley & Sons
Page : 1261 pages
File Size : 18,3 MB
Release : 2017-11-21
Category : Science
ISBN : 1118455908
This book is a welcome introduction and reference for users and innovators in geochronology. It provides modern perspectives on the current state-of-the art in most of the principal areas of geochronology and thermochronology, while recognizing that they are changing at a fast pace. It emphasizes fundamentals and systematics, historical perspective, analytical methods, data interpretation, and some applications chosen from the literature. This book complements existing coverage by expanding on those parts of isotope geochemistry that are concerned with dates and rates and insights into Earth and planetary science that come from temporal perspectives. Geochronology and Thermochronology offers chapters covering: Foundations of Radioisotopic Dating; Analytical Methods; Interpretational Approaches: Making Sense of Data; Diffusion and Thermochronologic Interpretations; Rb-Sr, Sm-Nd, Lu-Hf; Re-Os and Pt-Os; U-Th-Pb Geochronology and Thermochronology; The K-Ar and 40Ar/39Ar Systems; Radiation-damage Methods of Geo- and Thermochronology; The (U-Th)/He System; Uranium-series Geochronology; Cosmogenic Nuclides; and Extinct Radionuclide Chronology. Offers a foundation for understanding each of the methods and for illuminating directions that will be important in the near future Presents the fundamentals, perspectives, and opportunities in modern geochronology in a way that inspires further innovation, creative technique development, and applications Provides references to rapidly evolving topics that will enable readers to pursue future developments Geochronology and Thermochronology is designed for graduate and upper-level undergraduate students with a solid background in mathematics, geochemistry, and geology. "Geochronology and Thermochronology is an excellent textbook that delivers on the difficult balance between having an appropriate level of detail to be useful for an upper undergraduate to graduate-level class or research reference text without being too esoteric for a more general audience, with content and descriptions that are understandable and enlightening to the non-specialist. I would recommend this textbook for anyone interested in the history, principles, and mechanics of geochronology and thermochronology." --American Mineralogist, 2021 Read an interview with the editors to find out more: https://eos.org/editors-vox/the-science-of-dates-and-rates
Author : Claudio L. Rosenberg
Publisher : John Wiley & Sons
Page : 319 pages
File Size : 44,19 MB
Release : 2024-06-21
Category : Science
ISBN : 1394299494
Geodynamics of the Alps consists of three volumes. This first volume describes the recent and present-day structure and tectonic setting of the Alpine chain, from the lithospheric mantle to brittle crust and surface topography. It also provides a historical overview of Alpine research, with two chapters covering specific Alpine regions (Corsica and the Eastern Alps) through all phases of Alpine history. The aim of this book is to create a space for experts on Alpine research to present the state of the art of specific subjects and provide their own interpretations.
Author : Carina Hoorn
Publisher : John Wiley & Sons
Page : 595 pages
File Size : 45,10 MB
Release : 2018-02-22
Category : Science
ISBN : 111915989X
Mountains, Climate and Biodiversity: A comprehensive and up-to-date synthesis for students and researchers Mountains are topographically complex formations that play a fundamental role in regional and continental-scale climates. They are also cradles to all major river systems and home to unique, and often highly biodiverse and threatened, ecosystems. But how do all these processes tie together to form the patterns of diversity we see today? Written by leading researchers in the fields of geology, biology, climate, and geography, this book explores the relationship between mountain building and climate change, and how these processes shape biodiversity through time and space. In the first two sections, you will learn about the processes, theory, and methods connecting mountain building and biodiversity In the third section, you will read compelling examples from around the world exploring the links between mountains, climate and biodiversity Throughout the 31 peer-reviewed chapters, a non-technical style and synthetic illustrations make this book accessible to a wide audience A comprehensive glossary summarises the main concepts and terminology Readership: Mountains, Climate and Biodiversity is intended for students and researchers in geosciences, biology and geography. It is specifically compiled for those who are interested in historical biogeography, biodiversity and conservation.
Author : Jean Braun
Publisher : Cambridge University Press
Page : 270 pages
File Size : 43,5 MB
Release : 2006-05-04
Category : Science
ISBN : 9780521830577
Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. First published in 2006, Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9781107407152 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included.