Developing Essential Understanding of Mathematical Reasoning for Teaching Mathematics in Prekindergarten-grade 8


Book Description

How do your students determine whether a mathematical statement is true? Do they rely on a teacher, a textbook or various examples? How can you encourage them to connect examples, extend their ideas to new situations that they have not yet considered and reason more generally? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of mathematical reasoning requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about mathematical reasoning. It is organised around one big idea, supported by multiple smaller, interconnected ideas - essential understandings.Taking you beyond a simple introduction to mathematical reasoning, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.







Developing Essential Understanding of Addition and Subtraction for Teaching Mathematics in Prekindergarten-grade 2


Book Description

What is the relationship between addition and subtraction? How do you know whether an algorithm will always work? Can you explain why order matters in subraction but not in addition or why it is false to assert that the sum of any two whole numbers is greater than either number? It is organised around two big ideas and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining an understanding about addition and subtraction is essential as they are the foundation for students’ later learning of multiplication and division. Essential Understanding Series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12




Developing Essential Understanding of Expressions, Equations, and Functions for Teaching Mathematics in Grades 6-8


Book Description

Why do some equations have one solution, others two or even more solutions and some no solutions? Why do we sometimes need to ""switch"" the direction of an inequality symbol in solving an inequality? What could you say if a student described a function as an equation? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of expressions, equations and functions requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about expressions, equations and functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas - essential understandings. Taking you beyond a simple introduction to expressions, equations and functions, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students - and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.




Developing Essential Understanding of Number and Numeration for Teaching Mathematics in Prekindergarten--grade 2


Book Description

How do composing and decomposing numbers connect with the properties of addition? Focus on the ideas that you need to thoroughly understand in order to teach with confidence. The mathematical content of this book focuses on essential knowledge for teachers about numbers and number systems. It is organised around one big idea and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining this understanding is essential because numbers and numeration are building blocks for other mathematical concepts and for thinking quantitatively about the real-world. Essential Understanding series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12




Developing Essential Understanding of Geometry and Measurement for Teaching Mathematics in Grades 3-5


Book Description

How can you introduce terms from geometry and measurement so that your students’ vocabulary will enhance their understanding of concepts and definitions? What can you say to clarify the thinking of a student who claims that perimeter is always an even number? How does knowing what changes or stays the same when shapes are transformed help you support and extend your students’ understanding of shapes and the space that they occupy? How much do you know … and how much do you need to know? Helping your students develop a robust understanding of geometry and measurement requires that you understand fundamental statistical concepts deeply. But what does that mean? This book focuses on essential knowledge for mathematics teachers about geometry and measurement. It is organized around three big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry and measurement, the book will broaden and deepen your understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.




Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5


Book Description

Like algebra at any level, early algebra is a way to explore, analyse, represent and generalise mathematical ideas and relationships. This book shows that children can and do engage in generalising about numbers and operations as their mathematical experiences expand. The authors identify and examine five big ideas and associated essential understandings for developing algebraic thinking in grades 3-5. The big ideas relate to the fundamental properties of number and operations, the use of the equals sign to represent equivalence, variables as efficient tools for representing mathematical ideas, quantitative reasoning as a way to understand mathematical relationships and functional thinking to generalise relationships between covarying quantities. The book examines challenges in teaching, learning and assessment and is interspersed with questions for teachers’ reflection.




Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8


Book Description

Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.




Strengths-Based Teaching and Learning in Mathematics


Book Description

"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.




Teaching Math to Multilingual Students, Grades K-8


Book Description

Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.