Developing Production Pile Driving Criteria from Test Pile Data


Book Description

TRB’s National Cooperative Highway Research Program (NCHRP) Synthesis 418: Developing Production Pile Driving Criteria from Test Pile Data provides information on the current practices used by state transportation agencies to develop pile driving criteria, with special attention paid to the use of test pile data in the process.




Developing Production Pile Driving Criteria from Test Pile Data


Book Description

TRB’s National Cooperative Highway Research Program (NCHRP) Synthesis 418: Developing Production Pile Driving Criteria from Test Pile Data provides information on the current practices used by state transportation agencies to develop pile driving criteria, with special attention paid to the use of test pile data in the process.




The Application of Stress-wave Theory to Piles


Book Description

"This volume contains 101 papers presented at the 8th International Conference on the Application of Stress Wave Theory to Piles, held in Lisbon, Portugal in 2008." "It is divided in 14 chapters according to the conference themes: Wave mechanics applied to pile engineering; Relationship between static resistance to driving and long-term static soil resistance; Case histories involving measurementand analysis of stress waves; Dynamic monitoring of driven piles; Dynamic soil-pile interaction models - numerical and physical modeling; High-strain dynamic test; Low-strain dynamic test; Rapid-load test; Monitoring and analysis of vibratory driven piles; Correlation of dynamic and static load tests; Quality assurance of deep foundations using dynamic methods; Incorporation of dynamic testing into design codes and testing standards; Ground vibrations induced by pile motions; Dynamic measurements in ground field testing." "This conference aims to contribute to a better and more efficient professional interaction between specialized contractors, designers and academicians. By joining the contribution of all of them it was possible to elucidate the today's state-of-the-art in science, technology and practice in the application of stress wave theory to piles."--BOOK JACKET.




Frontier Technologies for Infrastructures Engineering


Book Description

An exclusive collection of papers introducing current and frontier technologies of special significance to the planning, design, construction, and maintenance of civil infrastructures. This volume is intended for professional and practicing engineers involved with infrastructure systems such as roadways, bridges, buildings, power generating and distribution systems, water resources, environmental facilities, and other civil infrastructure systems. Contributions are by internationally renowned and eminent experts, and cover: 1. Life-cycle cost and performance; 2.Reliability engineering; 3. Risk assessment and management; 4. Optimization methods and optimal design; 5. Role of maintenance, inspection, and repair; 6. Structural and system health monitoring; 7. Durability, fatigue and fracture; 8. Corrosion technology for metal and R/C structures; 9. Concrete materials and concrete structures.




Determination of Pile Driveability and Capacity from Penetration Tests


Book Description

Research has been conducted on the potential improvement of dynamic wave equation analysis methodology using in-situ soil testing techniques. As a basis for this investigation, the literature was reviewed and a summary was compiled of efforts made to date on the development of models and associated parameters for pile driving analysis. Furthermore a data base was developed containing more than 150 cases of test piles with static load tests, dynamic restrike tests, soil information, driving system data and installation records. One hundred data base cases were subjected to correlation studies using both wave equation and CAPWAP.




Pile Driving Analysis for Pile Design and Quality Assurance


Book Description

Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these cases, indirect estimates of the pile capacity can be made through dynamic measurements. These estimates can be performed either through pile driving formulae or through analytical methods, such as the Case method.Pile driving formulae, which relate the pile set per blow to the capacity of the pile, are frequently used to determine whether the pile has achieved its design capacity. However, existing formulae have numerous shortcomings. These formulae are based on empirical observations and lack scientific validation. This report details the development of more accurate and reliable pile driving formulae developed from advanced one-dimensional FE simulations. These formulae are derived for piles installed in five typical soil profiles: a floating pile in sand, an end¿bearing pile in sand, a floating pile in clay, an end¿bearing pile in clay and a pile crossing a normally consolidated clay layer and resting on a dense sand layer. The proposed driving formulae are validated through well-documented case histories of full-scale instrumented driven piles. The proposed formulae are more accurate and reliable on average than other existing methods for the case histories considered in this study.This report also discusses the development of a pile driving control system, a fully integrated system developed by Purdue that can be used to collect, process, and analyze data to estimate the capacities of piles using the Case method and the pile driving formulae developed at Purdue.







Board of Contract Appeals Decisions


Book Description

The full texts of Armed Services and othr Boards of Contract Appeals decisions on contracts appeals.




Symposium on Deep Foundations


Book Description