Developing Statistical Software in Fortran 95


Book Description

Many books teach computational statistics. Until now, however, none has shown how to write a good program. This book gives statisticians, biostatisticians and methodologically-oriented researchers the tools they need to develop high-quality statistical software. Topics include how to: Program in Fortran 95 using a pseudo object-oriented style Write accurate and efficient computational procedures Create console applications Build dynamic-link libraries (DLLs) and Windows-based software components Develop graphical user interfaces (GUIs) Through detailed examples, readers are shown how to call Fortran procedures from packages including Excel, SAS, SPSS, S-PLUS, R, and MATLAB. They are even given a tutorial on creating GUIs for Fortran computational code using Visual Basic.NET. This book is for those who want to learn how to create statistical applications quickly and effectively. Prior experience with a programming language such as Basic, Fortran or C is helpful but not required. More experienced programmers will learn new strategies to harness the power of modern Fortran and the object-oriented paradigm. This may serve as a supplementary text for a graduate course on statistical computing. From the reviews: "This book should be read by all statisticians, engineers, and scientists who want to implement an algorithm as a computer program. The book is the best introduction to programming that I have ever read. I value it as one of my important reference books in my personal library." Melvin J. Hinich for Techonmetrics, November 2006 "Overall, the book is well written and provides a reasonable introduction to the use of modern versions of Fortran for statistical computation. The real thrust of the book is building COM interfaces using Fortran, and it will no doubt be most useful to anyone who needs to build such interfaces." Journal of the American Statistical Association, June 2006 "The book is well written and is divided into chapters and sections which are coherent...Overall the book seems like a good resource for someone that already knows some dialect of FORTRAN and wants to learn a bit about what is new in FORTRAN 95..." Robert Gentleman for the Journal of Statistical Software, December 2006




Developing Statistical Software in Fortran 95


Book Description

Many books teach computational statistics. Until now, however, none has shown how to write a good program. This book gives statisticians, biostatisticians and methodologically-oriented researchers the tools they need to develop high-quality statistical software. Topics include how to: Program in Fortran 95 using a pseudo object-oriented style Write accurate and efficient computational procedures Create console applications Build dynamic-link libraries (DLLs) and Windows-based software components Develop graphical user interfaces (GUIs) Through detailed examples, readers are shown how to call Fortran procedures from packages including Excel, SAS, SPSS, S-PLUS, R, and MATLAB. They are even given a tutorial on creating GUIs for Fortran computational code using Visual Basic.NET. This book is for those who want to learn how to create statistical applications quickly and effectively. Prior experience with a programming language such as Basic, Fortran or C is helpful but not required. More experienced programmers will learn new strategies to harness the power of modern Fortran and the object-oriented paradigm. This may serve as a supplementary text for a graduate course on statistical computing. From the reviews: "This book should be read by all statisticians, engineers, and scientists who want to implement an algorithm as a computer program. The book is the best introduction to programming that I have ever read. I value it as one of my important reference books in my personal library." Melvin J. Hinich for Techonmetrics, November 2006 "Overall, the book is well written and provides a reasonable introduction to the use of modern versions of Fortran for statistical computation. The real thrust of the book is building COM interfaces using Fortran, and it will no doubt be most useful to anyone who needs to build such interfaces." Journal of the American Statistical Association, June 2006 "The book is well written and is divided into chapters and sections which are coherent...Overall the book seems like a good resource for someone that already knows some dialect of FORTRAN and wants to learn a bit about what is new in FORTRAN 95..." Robert Gentleman for the Journal of Statistical Software, December 2006




Developing Statistical Software in Fortran 95


Book Description

Many books teach computational statistics. Until now, however, none has shown how to write a good program. This book gives statisticians, biostatisticians and methodologically-oriented researchers the tools they need to develop high-quality statistical software. Topics include how to: Program in Fortran 95 using a pseudo object-oriented style Write accurate and efficient computational procedures Create console applications Build dynamic-link libraries (DLLs) and Windows-based software components Develop graphical user interfaces (GUIs) Through detailed examples, readers are shown how to call Fortran procedures from packages including Excel, SAS, SPSS, S-PLUS, R, and MATLAB. They are even given a tutorial on creating GUIs for Fortran computational code using Visual Basic.NET. This book is for those who want to learn how to create statistical applications quickly and effectively. Prior experience with a programming language such as Basic, Fortran or C is helpful but not required. More experienced programmers will learn new strategies to harness the power of modern Fortran and the object-oriented paradigm. This may serve as a supplementary text for a graduate course on statistical computing. From the reviews: "This book should be read by all statisticians, engineers, and scientists who want to implement an algorithm as a computer program. The book is the best introduction to programming that I have ever read. I value it as one of my important reference books in my personal library." Melvin J. Hinich for Techonmetrics, November 2006 "Overall, the book is well written and provides a reasonable introduction to the use of modern versions of Fortran for statistical computation. The real thrust of the book is building COM interfaces using Fortran, and it will no doubt be most useful to anyone who needs to build such interfaces." Journal of the American Statistical Association, June 2006 "The book is well written and is divided into chapters and sections which are coherent...Overall the book seems like a good resource for someone that already knows some dialect of FORTRAN and wants to learn a bit about what is new in FORTRAN 95..." Robert Gentleman for the Journal of Statistical Software, December 2006




Software for Data Analysis


Book Description

John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.




Introductory Statistics with R


Book Description

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.




Modern Applied Statistics with S


Book Description

A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods. The emphasis is on presenting practical problems and full analyses of real data sets.




R for SAS and SPSS Users


Book Description

While SAS and SPSS have many things in common, R is very different. My goal in writing this book is to help you translate what you know about SAS or SPSS into a working knowledge of R as quickly and easily as possible. I point out how they differ using terminology with which you are familiar, and show you which add-on packages will provide results most like those from SAS or SPSS. I provide many example programs done in SAS, SPSS, and R so that you can see how they compare topic by topic. When finished, you should be able to use R to: Read data from various types of text files and SAS/SPSS datasets. Manage your data through transformations or recodes, as well as splitting, merging and restructuring data sets. Create publication quality graphs including bar, histogram, pie, line, scatter, regression, box, error bar, and interaction plots. Perform the basic types of analyses to measure strength of association and group differences, and be able to know where to turn to cover much more complex methods.




Matrix Algebra


Book Description




Branch-and-Bound Applications in Combinatorial Data Analysis


Book Description

This book provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, pseudocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America.




Strength in Numbers: The Rising of Academic Statistics Departments in the U. S.


Book Description

Statistical science as organized in formal academic departments is relatively new. With a few exceptions, most Statistics and Biostatistics departments have been created within the past 60 years. This book consists of a set of memoirs, one for each department in the U.S. created by the mid-1960s. The memoirs describe key aspects of the department’s history -- its founding, its growth, key people in its development, success stories (such as major research accomplishments) and the occasional failure story, PhD graduates who have had a significant impact, its impact on statistical education, and a summary of where the department stands today and its vision for the future. Read here all about how departments such as at Berkeley, Chicago, Harvard, and Stanford started and how they got to where they are today. The book should also be of interests to scholars in the field of disciplinary history.