Development and Application of Methods Towards the Structural Characterization of Gas-phase Biomolecular Assemblies


Book Description

The utility of ultraviolet photodissociation mass spectrometry (UVPD-MS) in native MS approaches, including ion mobility spectrometry (IMS), for protein complexes is described in this dissertation. A modular drift tube demonstrated suitability for measuring collision cross sections (CCSs) of native-like ions on an Orbitrap mass spectrometer with high resolution using acquisition times as short as one minute. This IMS method is used throughout this dissertation for measurement of native-like and disordered structures. A fundamental study for determining the charge-dependent behavior of UVPD for protein complexes was evaluated using the homomeric Cu/Zn superoxide dismutase dimer, streptavidin tetramer, transthyretin tetramer, and C reactive protein pentamer as well as the heteromeric hemoglobin tetramer. A wide range of charge states were irradiated with 193 nm photons resulting in asymmetric charge partitioning of subcomplexes at lower energies (0.5 to 1.5 mJ/pulse) and symmetric dissociation at higher energies (1.5 to 3.0 mJ/pulse). The ability to access both of these competing dissociation pathways is unique to UVPD and contributes to the vast array of sequence ions and enhanced sequence coverage for protein complexes not obtained by any other activation method. With its ability to generate useful sequence information, UVPD was employed to study an intrinsically disordered protein, a set of asymmetric and symmetric trimers, and three membrane protein complexes. The vast population of structures adopted by the intrinsically disordered protein, high mobility group protein AT-hook 2 (HMGA2), was characterized using UVPD and the probable binding location of two DNA hairpins was determined. Trimers in the tautomerase superfamily that have nearly identical secondary structures differ in their quaternary arrangements to form asymmetric and symmetric homooligomers. In combination with collision-induced unfolding, UVPD proved capable of differentiating the two structures owing to the preservation of noncovalent interactions in the gas phase. Aquaporin z (AqpZ), mechanosensitive channel of large conductance (MscL), and the E. coli ammonia channel (AmtB) comprise the membrane protein complexes studied herein. UVPD of these complexes resulted in unprecedented levels of characterization with backbone cleavages demonstrating no significant influence from the hydrophobicity of the residues or the mobile proton-directed cleavages, which contrasts reports using electron- and collision-based dissociation methods, respectively. UVPD has also proven effective for localizing phosphorylated residues along the C-terminal domain (CTD) of RNA polymerase II, shedding light on the CTD code that mediates transcription regulation.







DOE Genomics


Book Description




Research Awards Index


Book Description







Gas Phase Structure Characterization Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry


Book Description

This dissertation investigates Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) based techniques to study the impact of molecular structure on conformation and binding energetics. A novel method to determine collison cross sectional areas using FTICR (CRAFTI), initially developed by the Dearden lab, was applied to study the conformations of molecular systems with unique structural attributes in an attempt to explore the molecular range of CRAFTI. The systems chosen for CRAFTI studies include crown-ether alkylammonium complexes and biogenic amino acids. The results were found to be consistent with expected behavior, and strongly correlated with experimental measurements made using ion mobility spectrometry (IMS) and predictions from computations. The analytical sensitivity of CRAFTI was highlighted by its ability to distinguish the normal and branched structural isomers of butylamine. Besides conformation characterization, quantitative evaluation of binding was undertaken on metal ion-cryptand complexes on the FTICR instrument using sustained off-resonance irradiation –collision-induced dissociation (SORI CID) method. Complex formation and dissociation was found to be a strong function of both guest and host sizes which impacted steric selectivity, and polarizability. The results demonstrate the ability of FTICR to simultaneously determine structure, conformation and binding thereby providing comprehensive molecular characterization.










Biophysical Methods for Biotherapeutics


Book Description

With a focus on practical applications of biophysical techniques, this book links fundamental biophysics to the process of biopharmaceutical development. • Helps formulation and analytical scientists in pharma and biotech better understand and use biophysical methods • Chapters organized according to the sequential nature of the drug development process • Helps formulation, analytical, and bioanalytical scientists in pharma and biotech better understand and usestrengths and limitations of biophysical methods • Explains how to use biophysical methods, the information obtained, and what needs to be presented in a regulatory filing, assess impact on quality and immunogenicity • With a focus on practical applications of biophysical techniques, this book links fundamental biophysics to the process of biopharmaceutical development.