Optical Fiber Biosensors


Book Description

Optical Fiber Biosensors: Device Platforms, Biorecognition, Applications provides a comprehensive overview of the field of fiber optic sensors using an interdisciplinary approach that covers the fabrication of sensing devices and optical hardware, the functionalization to perform selective biorecognition, and the main applications of biosensors, with a present and a future outlook. Chapters discuss the principles of light propagation and the sensing devices suitable to perform biosensing with optical fibers, the process to functionalize the previous devices to selective biosensing, and applications in cells, small molecules, biomarkers and protein sensing, with a birds eye view on the most important results. This book provides a coherent picture of fiber optic biosensors, from the start (the device) to the end (the application), explaining in simple terms what is the whole process for development of a biosensor. The book also contains practical material (e.g. commercial instruments, fabrication instructions, medical standards for biocompatibility) that cannot be easily found elsewhere, and this is very useful for researchers to plan their development and build their labs. - Covers the technologies and operating principles of optical fiber devices used in biosensing - Contains chapters on the chemistry and operational strategy to functionalize a fiber device to become an effective biosensor - Addresses the main applications of fiber optic biosensors and their specialization







Microfluidic Biosensors


Book Description

Microfluidic Biosensors provides a comprehensive overview covering the most recent emerging technologies on the design, fabrication, and integration of microfluidics with transducers. These form various integrated microfluidic biosensors with device configurations ranging from 2D to 4D levels. Coverage also includes advanced printed microfluidic biosensors, flexible microfluidics for wearable biosensors, autonomous lab-on-a-chip biosensors, CMOS-base microanalysis systems, and microfluidic devices for mobile phone biosensing. The editors and contributors of this book represent both academia and industry, come from a varied range of backgrounds, and offer a global perspective. This book discusses the design and principle of microfluidic systems and uses them for biosensing applications. The microfluidic fabrication technologies covered in this book provide an up-to-date view, allowing the community to think of new ways to overcome challenges faced in this field. The focus is on existing and emerging technologies not currently being analyzed extensively elsewhere, providing a unique perspective and much-needed content. The editors have crafted this book to be accessible to all levels of academics from graduate students, researchers, and professors working in the fields of biosensors, microfluidics design, material science, analytical chemistry, biomedical devices, and biomedical engineering. It can also be useful for industry professionals working for microfluidic device manufacturers, or in the industry of biosensors and biomedical devices. - Presents an in-depth overview of microfluidic biosensors and associated emerging technologies such as printed microfluidics and novel transducers - Addresses a range of microfluidic biosensors with device configurations ranging from 2D to 4D levels - Includes the commercialization aspects of microfluidic biosensors that provide insights for scientists and engineers in research and development




Optical Fiber-based Plasmonic Biosensors


Book Description

This book discusses the history, physics, fundamental principles, sensing technologies, and characterization of plasmonic phenomenon-based fiber-optic biosensors, using optic-plasmonic sensors as a case study. It describes the plasmonic phenomenon and its application in optical fiber-based sensing, presented based on properties and usage of different nanomaterials spread across nine chapters. Content covers advances in nanomaterials, structural designing, and their scope in biomedical applications. Future developments of biosensing devices and related articulate methods are also described. Features: Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field This book is aimed at researchers and graduate students in Optical Communications, Biomedical Engineering, Optics, Sensors, Instrumentation, and Measurement.




Plasmonic Optical Fiber Biosensors


Book Description

This book provides a thorough vision of the current trends in plasmonic optical fiber biochemical sensing. It gathers the most recent technological information and shows the maturity reached by the different subsequent technologies. Demonstrating roadmaps for the design process and implementation of plasmonic optical fiber biochemical sensors, the book bridges the gap between theory and application. With this philosophy, understanding key physical properties is of paramount importance for the efficient design of sensing platforms that will meet target specifications. You will learn about the role of the fiber configuration and the functional coating on the properties of the resulting optrodes. You will also get an encompassing overview on all optical fiber configurations used for plasmonic sensing thus far, especially on the progress made over the last decade and rendering the technology compatible for use in real conditions. The book presents both fundamental aspects and advanced applications while focusing on recent and emerging fields of research, such as the use of tilted fiber Bragg gratings, the integration of sensors in situ, the use of smart interrogation techniques, and much more. This is a unique reference for both beginners and experts in optical fiber-based sensors, especially for industrial engineers working in biophotonics and biochemical sensing, as it presents state-of-the-art design procedures and sensing features. The book’s theoretical background combined with recent advances of plasmonic-based optical fiber technologies also make it highly beneficial for all researchers, academics, and students specialized or interested in this flourishing and promising discipline.




Development of an Electrochemical Biosensor Platform and a Suitable Low-Impedance Surface Modification Strategy


Book Description

In this work, a flexible biosensor platform based on impedance spectroscopy and comprising of gold electrodes, polymeric flow cells and a suitable surface modification were developed. Initially, several surface modification techniques described in literature were implemented and optimized for impedimetric biosensors but their individual limitations rendered them unsuitable for this biosensor platform. A novel method based on photobleaching was developed and tested showing satisfactory results.




Fiber-Optic Sensors for Biomedical Applications


Book Description

This authoritative new resource presents fiber optic sensors and their applications in medical device design and biomedical engineering. Readers gain an understanding of which technology to use and adopt, and how to connect technologies with their respective applications. This book explores the innovation of diagnostics and how to use diagnostic tools. Principles of fiber optic sensing are covered and include details about intensity-based sensors, fiber bragg gratings, distributed sensors, and fabry-perot interferometers. This book explores interrogation software, standards for medical sensors, and discusses protocols and tools for validation. Various medical device engineering and applications are examined, including sensor catheterization, cardiovascular sensors, diagnostic in gastroscopy, urology, neurology, sensing in thermal ablation. Applications and detection of SPR sensors are presented, along with minimally invasive robotic surgery, smart textiles, wearable sensors and fiber-optic spectrometric sensors. This is a one-stop reference on fiber optic sensors for biomed applications.




Optical Sensors for Biomedical Diagnostics and Environmental Monitoring


Book Description

The field of plasmonics has shown extraordinary capabilities in realizing highly sensitive and accurate sensors for environmental monitoring and measurement of biological analytes. The inherent potential of such devices has led to growing interest worldwide in commercial fiber optic chemical and biosensors. Optical Sensors for Biomedical Diagnostics and Environmental Monitoring is an essential resource for students, established researchers, and industry developers in need of a reference work on both the fundamentals and latest advances in optical fiber sensor technology in biomedical diagnostics and environmental monitoring. The book includes rigorous theory and experimental techniques of surface plasmon and lossy mode resonances, as well as real-time sensing applications of resonance techniques implemented over optical fiber substrate using bulk layer and/or nanostructures as transducer and sensing layers. In addition, discussion of various design options for real-time sensors in environmental monitoring and biomedical diagnostics make the book approachable to readers from multidisciplinary fields.




Miniaturized Biosensing Devices


Book Description

This book presents tools and techniques for the development of miniature biosensors and their applications. The initial chapters discuss the advancements in the development of the transduction techniques, including optical, electrochemical, and piezoelectric, which are used for miniaturized biosensors. The book also reviews several technologies, such as nanotechnology, nanobiotechnology, immune-technology, DNA-technology, micro-manufacturing technology, electronic-circuit technology to increase the miniaturization and sensitivity of the biosensor platform. Subsequently, the chapters illustrate the applications of miniaturized biosensing systems in point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics, and biomedical research. Towards the end, the book discusses the advanced applications of biosensors in water quality monitoring, especially on-line detection systems and on-site detection of pesticides, heavy metals and bacteria in water. This book is an invaluable source for scientists working in biochemical engineering, bioengineering, and biomedical engineering in academia and industry.