Development and Implementation of a Mechanistic and Empirical Pavement Design Guide (MEPDG) for Rigid Pavements


Book Description

"Abstract: This report completes a sensitivity analysis of the MEPDG based on Oklahoma pavements, provides a literature review of base material best practices, increases the Oklahoma weather data available for the MEPDG, investigates the impact of curing on curling from drying shrinkage and from temperature differentials in concrete pavements, provides regional input guidance for strength, coefficient of thermal expansion, and shrinkage for Oklahoma concrete mixtures. This research will speed the adoption of the MEPDG in Oklahoma."--Technical report documentation page.







Mechanistic-empirical Pavement Design Guide Implementation Plan


Book Description

As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.




Mechanistic-Empirical Pavement Design Guide (MEPDG) Method Implemented to Estimate Damage in Flexible and Rigid Pavements


Book Description

The implementation of the Empirical-Mechanistic Pavement Design Guide (MEPDG) method for flexible and rigid pavements requires numerous input parameters. Most of these parameters can be easily determined while some require best estimates that are usually extracted from available literature. This thesis identifies the most critical input parameters in terms of their effects on the damage of pavements and their influence on the determination of the number of corrective maintenance cycles to be performed during the design life of pavements. It was found that for flexible pavement, change in the average monthly temperature by as little as results in large differences in the number of corrective maintenance cycles. Also, consistently with simple mechanics concepts, pavements on stiffer foundations performed better under the load and hence, required fewer number of the corrective maintenance cycles than those founded on more flexible soils. Also, variations in truck weights affected the outcome in terms of the estimated number of corrective maintenance cycles for flexible pavement. Hence, better estimates of the number of corrective maintenance cycles can be obtained when the analysis was based on larger numbers of truck samples. On the contrary, no significant difference in the final estimation of the number of corrective maintenance cycles was found for rigid pavements even when the average monthly temperatures were increased or decreased by as much as . Moreover, no major difference was observed when a larger sample of trucks was used as input for the analysis. Similarly, change in ambient temperature which is directly related to the differential temperature on the top and the bottom of the slab that may lead to the curling of the slab and faulting, was found not to be critical. Similar to the results obtained for flexible pavements, rigid pavement with stiffer foundation properties performed better in terms of the number of corrective maintenance cycles as they required fewer corrective maintenance cycles.




Implementation of the Mechanistic-empirical Pavement Design Guide in Utah


Book Description

"Highway agencies across the nation are moving towards implementation of the new AASHTO Mechanistic- Empirical Pavement Design Guide (MEPDG) for pavement design. The objective of this project was to implement the MEPDG into the daily operations of the Utah Department of Transportation (UDOT). The implementation of the MEPDG as a UDOT standard required modifications in some UDOT pavement design protocols (i.e., lab testing procedures, equipment, and protocols, traffic data reporting, software issues, design output interpretation, and others). A key requirement is validation of the MEPDG's nationally calibrated pavement distress and smoothness prediction models when applied under Utah conditions and performing local calibration if needed. This was accomplished using data from Long Term Pavement Performance (LTPP) projects located in Utah and UDOT pavement management system (PMS) pavement sections. The nationally calibrated MEPDG models were evaluated. With the exception of the new hot-mix asphalt (HMA) pavement total rutting model, all other models were found to be reasonable. The rutting model was locally calibrated to increase goodness of fit and remove significant bias. Due to the nature of the data used in model validation, it is recommended that further MEPDG model validation be accomplished in the future using a database that contains HMA pavement and jointed plain concrete pavement (JPCP) exhibiting moderate to severe deterioration. This report represents Phase II of the UDOT MEPDG implementation study and builds on the Phase I study report completed in 2005 for UDOT. The Draft User's Guide for UDOT Mechanistic-Empirical Pavement Design (UDOT Research Report No. UT-09.11a, dated October 2009) incorporates the findings of this report as inputs and pavement design guidelines for Utah for use by UDOT's pavement design engineers during trial implementation of the MEPDG"--Technical report documentation p.




Recommended Mechanistic-empirical Pavement Design Guide and Software


Book Description

"This digest announces the availability of key products from NCHRP Project 1-37A, 'Development of the 2002 guide for the design of new and rehabilitated pavement structures: phase II, ' for evaluation"--Page 1 excerpt




Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide


Book Description

This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.




Pavement Design and Materials


Book Description

A comprehensive, state-of-the-art guide to pavement design and materials With innovations ranging from the advent of SuperpaveTM, the data generated by the Long Term Pavement Performance (LTPP) project, to the recent release of the Mechanistic-Empirical pavement design guide developed under NCHRP Study 1-37A, the field of pavement engineering is experiencing significant development. Pavement Design and Materials is a practical reference for both students and practicing engineers that explores all the aspects of pavement engineering, including materials, analysis, design, evaluation, and economic analysis. Historically, numerous techniques have been applied by a multitude of jurisdictions dealing with roadway pavements. This book focuses on the best-established, currently applicable techniques available. Pavement Design and Materials offers complete coverage of: The characterization of traffic input The characterization of pavement bases/subgrades and aggregates Asphalt binder and asphalt concrete characterization Portland cement and concrete characterization Analysis of flexible and rigid pavements Pavement evaluation Environmental effects on pavements The design of flexible and rigid pavements Pavement rehabilitation Economic analysis of alternative pavement designs The coverage is accompanied by suggestions for software for implementing various analytical techniques described in these chapters. These tools are easily accessible through the book’s companion Web site, which is constantly updated to ensure that the reader finds the most up-to-date software available.