Advanced Radiation Protection Dosimetry


Book Description

Although many radiation protection scientists and engineers use dose coefficients, few know the origin of those dose coefficients. This is the first book in over 40 years to address the topic of radiation protection dosimetry in intimate detail. Advanced Radiation Protection Dosimetry covers all methods used in radiation protection dosimetry, including advanced external and internal radiation dosimetry concepts and regulatory applications. This book is an ideal reference for both scientists and practitioners in radiation protection and students in graduate health physics and medical physics courses. Features: A much-needed book filling a gap in the market in a rapidly expanding area Contains the history, evolution, and the most up-to-date computational dosimetry models Authored and edited by internationally recognized authorities and subject area specialists Interrogates both the origins and methodologies of dose coefficient calculation Incorporates the latest international guidance for radiation dosimetry and protection







ICRP Publication 130


Book Description




Radiation Safety


Book Description

This book discusses important fundamentals of radiation safety with specific details on dose units, calculations, measuring, and biological effects of ionizing radiation. The author covers different exposure situations and their requirements, and relevant legislation and regulations governing radiation safety. The book also examines radioactive waste management, the transport of radioactive materials, emergency planning and preparedness and various examples of radiation protection programs for industrial, medical, and academic applications.







Basic Health Physics


Book Description

Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, this monograph introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.




Ionizing and Non-ionizing Radiation


Book Description

This book provides readers with comprehensive details on the management and measures to protect health against risks to people and environments generated by the use of ionizing and non-ionizing radiation. This book is divided into three sections, namely, Radiation Protection and Measurement; Radiation Therapy; and Radioactivity. The first section covers ionizing radiation protection; population exposure to non-ionizing density; and the system of dosimetry quantities for use in emergency preparedness and response to nuclear or radiological accidents. The second section covers various planning techniques for spinal stereotactic body radiotherapy and the application of radiation technology in the development of a malaria vaccine. The third section discusses environmental radioactivity monitoring using efficient measurements and the assessment of radiation exposure to humans. Also in this section is the evaluation of the effects of chronic radiation exposure on the testes of mice after a nuclear power plant accident.




Radionuclide Behaviour in the Natural Environment


Book Description

Understanding radionuclide behaviour in the natural environment is essential to the sustainable development of the nuclear industry and key to assessing potential environmental risks reliably. Minimising those risks is essential to enhancing public confidence in nuclear technology. Scientific knowledge in this field has developed greatly over the last decade.Radionuclide behaviour in the natural environment provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration.After an introductory chapter, part one explores radionuclide chemistry in the natural environment, including aquatic chemistry and the impact of natural organic matter and microorganisms. Part two discusses the migration and radioecological behavior of radionuclides. Topics include hydrogeology, sorption and colloidal reactions as well as in-situ investigations. Principles of modelling coupled geochemical, transport and radioecological properties are also discussed. Part three covers application issues: assessment of radionuclide behaviour in contaminated sites, taking Chernobyl as an example, estimation of radiological exposure to the population, performance assessment considerations related to deep geological repositories, and remediation concepts for contaminated sites.With its distinguished editors and international team of expert contributors, Radionuclide behaviour in the natural environment is an essential tool for all those interested or involved in nuclear energy, from researchers, designers and industrial operators to environmental scientists. It also provides a comprehensive guide for academics of all levels in this field. - Provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration - Explores radionuclide chemistry in the natural environment - Discusses the migration and radioecological behaviour of radionuclides