Production Processes of Renewable Aviation Fuel


Book Description

Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends presents the available production processes for renewable aviation fuel, including the application of intensification and energy integration strategies. Despite biofuels have gained a lot of interest in the last years, renewable aviation fuel is one of the less studied. In the last ten years, there has been an incredible growth in the number of patents and articles related with its production processes. Several transformation pathways have been proposed, and new ones have been outlined. The book contains the main information about the production processes of renewable aviation fuel, considering international standards, available technologies, and recent scientific contributions. It also outlines the motivation for the development of renewable aviation fuel, and its main processing pathways from the different renewable raw materials. In addition, the application of intensification and energy integration strategies is presented, along with the identified future trends in this area - Includes the motivation for the development of renewable aviation fuel and applicable standards - Describes the processing pathways from biomass to produce renewable aviation fuel - Presents the application of intensification and energy integration strategies for the production of renewable aviation fuel - The future trends in the production processes of renewable aviation fuel are discussed




Transport Phenomena in Fires


Book Description

Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. This edited book presents the state-of-the-art of modeling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modeling, combustion, soot formation, thermal radiation modeling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.










Chemical Kinetic Modeling of Jet Fuel Surrogates


Book Description

Jet fuels, like typical transportation fuels, are mixtures of several hundreds of compounds belonging to different hydrocarbon classes. Their composition varies from one source to another, and only average fuel properties are known at best. In order to understand the combustion characteristics of the real fuels, and to address the problem of combustion control, computational studies using a detailed kinetic model to represent the real fuel, serves as a highly useful tool. However, the complexity of the real fuels makes it infeasible to simulate their combustion characteristics directly, requiring a simplified fuel representation to circumvent this difficulty. Typically, the real fuels are modeled using a representative surrogate mixture, i.e. a well-defined mixture comprised of a few components chosen to mimic the desired physical and chemical properties of the real fuel under consideration. Surrogates have been proposed for transportation fuels, including aviation fuels, and several kinetic modeling attempts for the proposed surrogates have also been made. However, (i) the fundamental kinetics of individual fuels, which make up the surrogate mixtures is not understood well, (ii) their combustion behavior at low through high temperatures has not been comprehensively validated, and this directly impacts the (iii) reliability of the multi-component reaction mechanism for a surrogate made up of these individual components. The present work is aimed at addressing the afore-mentioned concerns. The objective of this work is to develop a single, reliable kinetic model that can describe the oxidation of a few representative fuels, which are important components of transportation fuel surrogates, and thereby capture the specificities of the simpler, but still multi-component surrogates. The reaction mechanism is intended to well-represent the individual components as well as a multi-component surrogate for jet fuel made up of these fuel components. Further, this reaction mechanism is desired to be applicable at low through high temperatures, and be compact enough that chemical kinetic analysis is feasible. First, a representative compound for each of the major hydrocarbon classes found in the real jet fuel is identified. A surrogate for jet fuels is chosen to be comprised of n-dodecane (to represent normal alkanes), methylcyclohexane (to represent cyclic alkanes), and m-xylene (to represent aromatics). A Component Library approach is invoked for the development of a single, consistent, and reliable chemical scheme to accurately model this multi-component surrogate mixture. The chemical model is assembled in stages, starting with a base model and adding to it sub-mechanisms for the individual components of the surrogate, namely m- xylene, n-dodecane, and methylcyclohexane. The chemical model is validated comprehensively every time the oxidation pathways of a new component are incorporated into it and the experimental data is well captured by the simulations. In addition to the jet fuel surrogate, with the number of fuels described in the proposed reaction mechanism, a surrogate for the alternative Fischer-Tropsch fuels is also considered. Surrogates are defined for jet fuels and Fischer-Tropsch fuels by matching target properties important for combustion applications between the surrogate and the real fuel. The simulations performed using the proposed reaction mechanism, with the surrogates defined as fuels, are compared against global targets, such as ignition delays, flow reactor profiles, and flame speed measurements for representative jet fuels and Fischer-Tropsch fuels. The computations show promising agreement with these experimental data sets. The proposed reaction mechanism is well-suited to be used in real flow simulations of jet fuels. The proposed reaction mechanism has the ability to describe the kinetics of n- heptane, iso-octane, substituted aromatics, n-dodecane, and methylcyclohexane, all of which are important components of transportation fuel surrogates. Considering the large number of hydrocarbons whose kinetics are well described by this reaction mechanism, there are avenues for this reaction mechanism to be used to model other transportation fuels, such as gasoline, diesel, and alternative fuels, in addition to the jet and Fischer-Tropsch fuels discussed in the present study.







SFPE Handbook of Fire Protection Engineering


Book Description




Terrorism Versus Democracy


Book Description

Examines global terrorist networks and discusses the long-term future of terrorism.




Synthetic Fuels Handbook


Book Description

Capitalize on the Vast Potential of Alternative Energy Sources Such as Fuel Cells and Biofuels Synthetic Fuels Handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Written by internationally renowned fuels expert James G. Speight, this vital resource describes the production and properties of fuels from natural gas and natural gas hydrates...tar sand bitumen...coal...oil shale...synthesis gas...crops...wood sources...biomass...industrial and domestic waste...landfill gas...and much more. Using both U.S. and SI units, Synthetic Fuels Handbook features: Information on conventional and nonconventional fuel sources Discussion of the production of alternative fuels on both industrial and individual scales Analyses of properties and uses of gaseous, liquid, and solid fuels from different sources Comparison of properties of alternative fuels with petroleum-based fuels Discover All the Benefits and Trade-Offs of Synthetic Fuels • Fuel sources: conventional and nonconventional • Natural gas and natural gas hydrates • Petroleum and heavy oil • Tar sand bitumen • Coal • Oil shale • Synthesis gas • Crops • Wood sources • Biomass • Industrial and domestic waste • Landfill gas • Comparison of the properties and uses of gaseous fuels from different sources • Comparison of the properties and uses of liquid fuels from different sources • Comparison of the properties and uses of solid fuels from different sources