Human-Robot Interaction Strategies for Walker-Assisted Locomotion


Book Description

This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed.




Human-Robot Interaction


Book Description

The book Human-Robot Interaction - Perspectives and Applications highlights the latest developments and obstacles in the field of human-machine interaction, including collaborative and humanoid robots, symbiosis between humans and robots, human-human collaboration, and robotics. Human-robot interaction has immense potential in areas like healthcare, education, manufacturing, military, and space exploration. This volume consists of several chapters that explore various topics such as the use of robotic wheelchairs, deep neural networks for robot grasp recognition, materials and sensors required for human-robot interaction, the use of drone technology in agriculture, healthcare robots in smart hospitals, and more.




Building a Multimodal Human-Robot Interface


Book Description

No one claims that people must interact with machines in the same way that they interact with other humans. Certainly, people do not carry on conversations with their toasters in the morning, unless they have a serious problem. However, the situation becomes a bit more complex when we begin to build and interact with machines or robots that either look like humans or have functionalities and capabilities. Then, people well might interact with their humanlike machines in ways that mimic human-human communication. For example, if a robot has a face, a human might interact with it similarly to how humans interact with other creatures with faces. Specifically, a human might talk to it, gesture to it, smile at it, and so on. If a human interacts with a computer or a machine that understands spoken commands, the human might converse with the machine, expecting it to have competence in spoken language. In our research on a multimodal interface to mobile robots, we have assumed a model of communication and interaction that, in a sense, mimics how people communicate. Our interface therefore incorporates both natural language understanding and gesture recognition as communication modes. We limited the interface to these two models to simplify integrating them in the interface and to make our research more tractable. We believe that with an integrated system, the user is less concerned with how to communicate (which interactive mode to employ for a task) and is therefore free to concentrate on the tasks and goals at hand. Because we integrate all our system's components, users can choose any combination of our interface's modalities. The onus is on our interface to integrate the input, process it, and produce the desired results.




Human-Robot Interactions in Future Military Operations


Book Description

Soldier-robot teams will be an important component of future battle spaces, creating a complex but potentially more survivable and effective combat force. The complexity of the battlefield of the future presents its own problems. The variety of robotic systems and the almost infinite number of possible military missions create a dilemma for researchers who wish to predict human-robot interactions (HRI) performance in future environments. Human-Robot Interactions in Future Military Operations provides an opportunity for scientists investigating military issues related to HRI to present their results cohesively within a single volume. The issues range from operators interacting with small ground robots and aerial vehicles to supervising large, near-autonomous vehicles capable of intelligent battlefield behaviors. The ability of the human to 'team' with intelligent unmanned systems in such environments is the focus of the volume. As such, chapters are written by recognized leaders within their disciplines and they discuss their research in the context of a broad-based approach. Therefore the book allows researchers from differing disciplines to be brought up to date on both theoretical and methodological issues surrounding human-robot interaction in military environments. The overall objective of this volume is to illuminate the challenges and potential solutions for military HRI through discussion of the many approaches that have been utilized in order to converge on a better understanding of this relatively complex concept. It should be noted that many of these issues will generalize to civilian applications as robotic technology matures. An important outcome is the focus on developing general human-robot teaming principles and guidelines to help both the human factors design and training community develop a better understanding of this nascent but revolutionary technology. Much of the research within the book is based on the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) 5-year Army Technology Objective (ATO) research program. The program addressed HRI and teaming for both aerial and ground robotic assets in conjunction with the U.S. Army Tank and Automotive Research and Development Center (TARDEC) and the Aviation and Missile Development Center (AMRDEC) The purpose of the program was to understand HRI issues in order to develop and evaluate technologies to improve HRI battlefield performance for Future Combat Systems (FCS). The work within this volume goes beyond the research results to encapsulate the ATO's findings and discuss them in a broader context in order to understand both their military and civilian implications. For this reason, scientists conducting related research have contributed additional chapters to widen the scope of the original research boundaries.




Human-Robot Interaction


Book Description

This book offers the first comprehensive yet critical overview of methods used to evaluate interaction between humans and social robots. It reviews commonly used evaluation methods, and shows that they are not always suitable for this purpose. Using representative case studies, the book identifies good and bad practices for evaluating human-robot interactions and proposes new standardized processes as well as recommendations, carefully developed on the basis of intensive discussions between specialists in various HRI-related disciplines, e.g. psychology, ethology, ergonomics, sociology, ethnography, robotics, and computer science. The book is the result of a close, long-standing collaboration between the editors and the invited contributors, including, but not limited to, their inspiring discussions at the workshop on Evaluation Methods Standardization for Human-Robot Interaction (EMSHRI), which have been organized yearly since 2015. By highlighting and weighing good and bad practices in evaluation design for HRI, the book will stimulate the scientific community to search for better solutions, take advantages of interdisciplinary collaborations, and encourage the development of new standards to accommodate the growing presence of robots in the day-to-day and social lives of human beings.







Development of a Multimodal Human-computer Interface for the Control of a Mobile Robot


Book Description

The recent advent of consumer grade Brain-Computer Interfaces (BCI) provides a new revolutionary and accessible way to control computers. BCI translate cognitive electroencephalography (EEG) signals into computer or robotic commands using specially built headsets. Capable of enhancing traditional interfaces that require interaction with a keyboard, mouse or touchscreen, BCI systems present tremendous opportunities to benefit various fields. Movement restricted users can especially benefit from these interfaces. In this thesis, we present a new way to interface a consumer-grade BCI solution to a mobile robot. A Red-Green-Blue-Depth (RGBD) camera is used to enhance the navigation of the robot with cognitive thoughts as commands. We introduce an interface presenting 3 different methods of robot-control: 1) a fully manual mode, where a cognitive signal is interpreted as a command, 2) a control-flow manual mode, reducing the likelihood of false-positive commands and 3) an automatic mode assisted by a remote RGBD camera. We study the application of this work by navigating the mobile robot on a planar surface using the different control methods while measuring the accuracy and usability of the system. Finally, we assess the newly designed interface's role in the design of future generation of BCI solutions.




Human-Robot Interaction in Social Robotics


Book Description

Human–Robot Interaction in Social Robotics explores important issues in designing a robot system that works with people in everyday environments. Edited by leading figures in the field of social robotics, it draws on contributions by researchers working on the Robovie project at the ATR Intelligent Robotics and Communication Laboratories, a world leader in humanoid interactive robotics. The book brings together, in one volume, technical and empirical research that was previously scattered throughout the literature. Taking a networked robot approach, the book examines how robots work in cooperation with ubiquitous sensors and people over telecommunication networks. It considers the use of social robots in daily life, grounding the work in field studies conducted at a school, train station, shopping mall, and science museum. Critical in the development of network robots, these usability studies allow researchers to discover real issues that need to be solved and to understand what kinds of services are possible. The book tackles key areas where development is needed, namely, in sensor networks for tracking humans and robots, humanoids that can work in everyday environments, and functions for interacting with people. It introduces a sensor network developed by the authors and discusses innovations in the Robovie humanoid, including several interactive behaviors and design policies. Exploring how humans interact with robots in daily life settings, this book offers valuable insight into how robots may be used in the future. The combination of engineering, empirical, and field studies provides readers with rich information to guide in developing practical interactive robots.




Human-Robot Interaction


Book Description

This book takes the vocal and visual modalities and human-robot interaction applications into account by considering three main aspects, namely, social and affective robotics, robot navigation, and risk event recognition. This book can be a very good starting point for the scientists who are about to start their research work in the field of human-robot interaction.