Pavement Cracking


Book Description

Internationally, much attention is given to causes, prevention, and rehabilitation of cracking in concrete, flexible, and composite pavements. The Sixth RILEMInternational Conference on Cracking in Pavements (Chicago, June 16-18, 2008) provided a forum for discussion of recent developments and research results.This book is a collection of papers fr







Asphalt Pavements


Book Description

Asphalt Pavements contains the proceedings of the International Conference on Asphalt Pavements (Raleigh, North Carolina, USA, 1-5 June 2014), and discusses recent advances in theory and practice in asphalt materials and pavements. The contributions cover a wide range of topics:- Environmental protection and socio-economic impacts- Additives and mo




Bituminous Mixtures and Pavements VII


Book Description

Highway engineers are facing the challenge not only to design and construct sustainable and safe pavements properly and economically. This implies a thorough understanding of materials behaviour, their appropriate use in the continuously changing environment, and implementation of constantly improved technologies and methodologies. Bituminous Mixtures and Pavements VII contains more than 100 contributions that were presented at the 7th International Conference ‘Bituminous Mixtures and Pavements’ (7ICONFBMP, Thessaloniki, Greece 12-14 June 2019). The papers cover a wide range of topics: - Bituminous binders - Aggregates, unbound layers and subgrade - Bituminous mixtures (Hot, Warm and Cold) - Pavements (Design, Construction, Maintenance, Sustainability, Energy and environment consideration) - Pavement management - Pavement recycling - Geosynthetics - Pavement assessment, surface characteristics and safety - Posters Bituminous Mixtures and Pavements VII reflects recent advances in highway materials technology and pavement engineering, and will be of interest to academics and professionals interested or involved in these areas.










Asphalt Paving Technology


Book Description




Pavement Design and Materials


Book Description

A comprehensive, state-of-the-art guide to pavement design and materials With innovations ranging from the advent of SuperpaveTM, the data generated by the Long Term Pavement Performance (LTPP) project, to the recent release of the Mechanistic-Empirical pavement design guide developed under NCHRP Study 1-37A, the field of pavement engineering is experiencing significant development. Pavement Design and Materials is a practical reference for both students and practicing engineers that explores all the aspects of pavement engineering, including materials, analysis, design, evaluation, and economic analysis. Historically, numerous techniques have been applied by a multitude of jurisdictions dealing with roadway pavements. This book focuses on the best-established, currently applicable techniques available. Pavement Design and Materials offers complete coverage of: The characterization of traffic input The characterization of pavement bases/subgrades and aggregates Asphalt binder and asphalt concrete characterization Portland cement and concrete characterization Analysis of flexible and rigid pavements Pavement evaluation Environmental effects on pavements The design of flexible and rigid pavements Pavement rehabilitation Economic analysis of alternative pavement designs The coverage is accompanied by suggestions for software for implementing various analytical techniques described in these chapters. These tools are easily accessible through the book’s companion Web site, which is constantly updated to ensure that the reader finds the most up-to-date software available.




Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes


Book Description

A result of the Strategic Highway Research Program's asphalt research is the development of performance-based specifications for asphalt binders and mixtures to control 3 distress modes: rutting; fatigue cracking; and thermal cracking. The SHRP A-005 project developed detailed pavement performance models to support these binder and mixture specifications and performance-based mixture designs. This report documents the findings of this extensive research effort and provides supporting data for the performance-based specifications and mixture design procedure called SUPERPAVE. The A-005 contract developed and used a sophisticated, mechanistic-based pavement performance model to define the relationships between asphalt binder and mixture properties and pavement distress. A comprehensive pavement performance model was developed that predicts the amount of fatigue cracking, thermal cracking and rutting in asphalt concrete pavements with time, using results from the accelerated laboratory tests. The pavement performance models for each distress were also used to confirm the relevant binder and mixture properties established by other SHRP contractors. The model has 3 parts: a mixture evaluation model; a pavement response model; and a pavement distress model.