Biomedical Applications of Electroactive Polymer Actuators


Book Description

Giving fundamental information on one of the most promising families of smart materials, electroactive polymers (EAP) this exciting new titles focuses on the several biomedical applications made possible by these types of materials and their related actuation technologies. Each chapter provides a description of the specific EAP material and device configuration used, material processing, device assembling and testing, along with a description of the biomedical application. Edited by well-respected academics in the field of electroactive polymers with contributions from renowned international experts, this is an excellent resource for industrial and academic research scientists, engineers, technicians and graduate students working with polymer actuators or in the fields of polymer science.




Biomedical Applications of Polymeric Materials and Composites


Book Description

With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.




Electrically Conductive Polymers and Polymer Composites


Book Description

A comprehensive and up-to-date overview of the latest research trends in conductive polymers and polymer hybrids, summarizing recent achievements. The book begins by introducing conductive polymer materials and their classification, while subsequent chapters discuss the various syntheses, resulting properties and up-scaling as well as the important applications in biomedical and biotechnological fields, including biosensors and biodevices. The whole is rounded off by a look at future technological advances. The result is a well-structured, essential reference for beginners as well as experienced researchers.




Electroactive Polymer (EAP) Actuators as Artificial Muscles


Book Description

Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.




Nanostructured Conductive Polymers


Book Description

Providing a vital link between nanotechnology and conductive polymers, this book covers advances in topics of this interdisciplinary area. In each chapter, there is a discussion of current research issues while reviewing the background of the topic. The selection of topics and contributors from around the globe make this text an outstanding resource for researchers involved in the field of nanomaterials or polymer materials design. The book is divided into three sections: From Conductive Polymers to Nanotechnology, Synthesis and Characterization, and Applications.







Disposable Electrochemical Sensors for Healthcare Monitoring


Book Description

Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.




Conducting Polymer-Based Nanocomposites


Book Description

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices




Electroactive Polymers for Robotic Applications


Book Description

This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.




Conducting Polymers


Book Description

Conducting polymers are versatile materials that possess both the unique properties of polymeric materials (elastic behavior, reversible deformation, flexibility, etc.) and the ability to conduct electricity with bulk conductivities comparable to those of metals and semiconductors. Conducting Polymers: Chemistries, Properties and Biomedical Applications provides current, state-of-the-art knowledge of conducting polymers and their composites for biomedical applications. This book covers the fundamentals of conducting polymers, strategies to modify the structure of conducting polymers to make them biocompatible, and their applications in various biomedical areas such as drug/gene delivery, tissue engineering, antimicrobial activities, biosensors, etc. FEATURES Covers the state-of-the-art progress on biodegradable conducting polymers for biomedical applications Presents synthesis, characterization, and applications of conducting polymers for various biomedical research Provides the fundamentals of biodegradation mechanisms and the role of conduction in biomedical devices Offers details of novel methods and advanced technologies used in biomedical applications using conducting polymers Highlights new directions for scientists, researchers, and students to better understand the chemistry, technologies, and applications of conducting polymers This book is essential reading for all academic and industrial researchers working in the fields of materials science, polymers, nanotechnology, and biomedical technology.