Development of Efficient, Stable Organic-inorganic Hybrid Solar Cells


Book Description

Developing a fundamental understanding of photocurrent generation processes at organic-inorganic interfaces is critical for improving hybrid solar cell efficiency and stability. This dissertation explores processes at these interfaces by combining data from photovoltaic device performance tests with characterization experiments conducted directly on the device. The dissertation initially focuses on exploring how morphologically and chemically modifying the organic-inorganic interface, between poly(3-hexylthiophene) (P3HT) as the electron donating light absorbing polymer and titanium dioxide (TiO2) as the electron acceptor, can result in stable and efficient hybrid solar cells. Given the heterogeneity which exists within bulk heterojunction devices, stable interfacial prototypes with well-defined interfaces between bilayers of TiO2 and P3HT were developed, which demonstrate tunable efficiencies ranging from 0.01 to 1.6 %. Stability of these devices was improved by using Cu-based hole collecting electrodes. Efficiency values were tailored by changing TiO2 morphology and by introducing sulfide layers like antimony trisulfide (Sb2S3) at the P3HT-TiO2 interface. The simple bilayer device design developed in this dissertation provides an opportunity to study the precise role played by nanostructured TiO2 surfaces and interfacial modifiers using a host of characterization techniques directly on a working device. Examples introduced in this dissertation include X-ray photoelectron spectroscopy (XPS) depth profiling analysis of metal-P3HT and P3HT-TiO2 interfaces and Raman analysis of bonding between interface modifiers like Sb2S3 and P3HT. The incompatibility of TiO2 with P3HT was significantly reduced by using P3HT derivatives with -COOH moieties at the extremity of a polymer chain. The role of functional groups like -COOH in interfacial charge separation phenomena was studied by comparing the photovoltaic behavior of these devices with those based on pristine P3HT. Finally, for hybrid solar cells discussed in this dissertation to become commercially viable, high temperature processing steps of the inorganic TiO2 layer must be avoided. Accordingly, this dissertation demonstrates the novel use of electromagnetic radiation in the form of microwaves to catalyze growth of anatase TiO2 thin films at temperatures as low as 150 °C, which is significantly lower than that used in conventional techniques. This low temperature process can be adapted to a variety of substrates and can produce patterned films. Accordingly, the ability to fabricate TiO2 thin films by the microwave process at low temperatures is anticipated to have a significant impact in processing devices based on plastics.




Comprehensive Guide on Organic and Inorganic Solar Cells


Book Description

Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology




Stability Studies of Organic-inorganic Hybrid Solar Cells


Book Description

Organic-inorganic hybrid solar cells such as dye-sensitized solar cells (DSSCs) have reached photovoltaic conversion efficiency of 12.3%.1 Their immediate successor, perovskite solar cells (PSCs), have reached an unprecedented efficiency of 17.9% in 2014, from 3.81% in 2009 2, making them competitive with thin-film silicon based PV technology. However, the most significant concern for the organic-inorganic solar cells is their long-term instability, especially at high temperature, above ca. 60 °C, and in contact with moisture present in the air. Their application will be limited unless they have credited stability performance. Improving the stability of organic-inorganic solar cells and understanding their degradation mechanisms is essential for their commercialization and wide-spread use. In the thesis, the stability and degradation mechanisms of two types of organic-inorganic solar cells: flexible dye-sensitized solar cells (DSSCs) built on ITO/PEN substrates and perovskite solar cells (PSCs) were investigated.The first chapter was a general introduction to the organic-inorganic hybrid solar cells, especially dye-sensitized solar cells and perovskite solar cells, such as the development history, structure and operating principles of the cells and the research objectives of the studies.In Chapter 2, literatures regarding the stability of DSSCs and PSCs were thoroughly reviewed and findings of their degradation mechanisms were summarized, which also pointed out research gaps and critical stability issues that still need to be understood and improved.In Chapter 3, all the experimental details are specified, including the chemicals, materials, device fabrication and characterization techniques, stability testing conditions and data analysis. In Chapter 4, the characteristics of flexible DSSCs with the photoanode produced using cold isostatic pressing technique were studied using electrochemical impedance spectroscopy (EIS). The data obtained were analyzed using a transmission line model of DSSCs, which pointed out that the pressing technique may improve short term performance of the devices, but the long-term performance of devices made on plastic substrates deteriorated with aging as a result of reduced TiO2 particle-particle and/or particle-conductive substrate contacts.The results obtained from Chapter 4 gave rise to the inspiration of the studies in Chapter 5, where the mechanical and electrochemical stability of compressed photoanodes (TiO2/ITO/PEN) and counter electrodes (Pt/ITO/PEN) in three different ionic liquid (IL) based electrolyte environment were studied using mechanical bending machine, cyclic voltammetry (CV), EIS, X-ray photoelectron spectroscopy and Inductively coupled plasma mass spectrometry. The results showed that the presence of Li+ ions and H2O molecules in the electrolyte were detrimental to the stability of devices. Li+ ions were responsible to the detachment of Pt particles from the Pt/ITO/PEN electrode and the increase in the recombination resistance of compressed TiO2 films, explaining the gradual increase of Voc with aging observed in chapter 4. The presence of water molecules in the electrolyte can cause degradation of the electrolyte species, forming iodate compounds, and also serious degradation of the ITO substrate. The most stable outcome could be obtained with Li+ ions and H20 free electrolyte. Efficient and stable flexible DSSCs that take advantage of the negligible vapor pressure of IL electrolytes, with minimal sacrifice of photovoltaic conversion efficiency, were successfully produced and demonstrated in Chapter 6 using an ALD deposited blocking layer of 12 nm and an around 1 μm thick TiO2 film, sensitized with hydrophobic dye (MK-2).Following the success of making more stable DSSCs, a much improved stability of the perovskite solar cells was demonstrated in Chapter 7 by using a sophisticated sealing method that effectively reduced the attack of water from the environment. The cells showed outstanding stability at 50% humidity and one sun illumination over 16 temperature cycling tests (350 hours) at cell temperatures of 10 to 100 °C, followed by 500 hours constant cell temperature testing at 85 °C. Also, the degradation mechanisms were revealed using post-mortem analysis of these cells using XRD and cross-sectional SEM analysis.We drew some final conclusions in Chapter 8 together with our outlooks in the future research and development of more stable DSSCs and PSCs.




Organic, Inorganic and Hybrid Solar Cells


Book Description

Provides detailed descriptions of organic, inorganic, and hybrid solar cells and the latest developments in the quest to produce low-cost, long-lasting solar cells What will it take to transform solar energy from an important alternative source to a truly competitive and, perhaps, dominant one? Lower cost and longer life. Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice provides in-depth information on the three types of existing solar cells, giving readers a good foundation for evaluating the technologies with the most potential for competing with energy from fossil fuels. Featuring a Foreword written by Nobel Peace Prize co-winner Dr. Woodrow W. Clark, this timely and comprehensive guide: Focuses on the realization of low-cost and long-life solar cells study and applications Reviews the properties of inorganic materials, primarily semiconductors Explores the electrical and optical properties of organic materials Discusses the interfacing of organic and inorganic materials: compatibility of deposition, the adhesion problem, formation of surface states, and band-level realignment Provides a detailed description of organic-inorganic hybrid solar cells, from the basic principles to practical devices Introduces a sandwiched structure for hybrid solar cells, which combines a far lower production cost than inorganic solar cells while stabilizing and extending the life of organic material far beyond that of organic solar cells Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice is a first-rate professional reference for electrical engineers and important supplemental reading for graduate students in related areas of study.




Organic Solar Cells


Book Description

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.




Efficient, Low-cost Organic-inorganic Hybrid Solar Cells Via Materials, Interface, and Device Structure Design


Book Description

The concept of the inter-mixing of donor-acceptor materials in a single layer revolutionized the solar cell technology. The commonly used materials are lack of strong absorption in the near-infrared region. Pyrite FeS2 is a promising material because of its high absorption in the range of 300-1100 nm. In addition, it is abundant, non-toxic and has long term stability as well as the extraordinary electrical properties. Pyrite FeS2 hierarchical microparticles consisting of cubic crystals with defined {100} faceted textures were synthesized using a hydrothermal method with the presence of ethylenediamine and polyvinylpyrrolidone. Short, branched, and chromosome-like pyrite FeS2 rods with a diameter of 10 nm and a length of 20-30 nm as well as quasi-cubic NC agglomerates with a size of 200 nm were obtained by hot injection methods. The growth of anisotropic iron pyrite nanocrystals (NCs) follows the oriented attachment mechanism at the early growth stage of the hot injection synthesis followed by Ostwald ripening mechanism as time progresses. In the fabrication of inverted organic-inorganic hybrid solar cells with pyrite NCs, we realize an effective hole transport layer (HTL) improves the performance of the solar cells and provides additional protection against water and oxygen. The HTL serves as a selective contact by extracting holes while concurrently blocking electrons, thereby reducing dark (leakage) current and enhancing the open circuit voltage (VOC), short circuit current (JSC), and fill factor (FF). The inverted hybrid CdSe -polymer solar cells with the poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS)/MoO3 dual HTLs showed superior performance over those with a single HTL of PEDOT:PSS or MoO3. The enhancement in electron transport in the active layer, the improvement in hole extraction at active layer/anode interface as well as a prevention of leakage current account for the enhancement in the efficiency of the solar cells with dual HTLs. In order to achieve an efficient charge separation and correlates the film morphology and grain size with the device performance. A two-step solution process with thermal plus solvent vapor-assisted thermal annealing was developed for the fabrication of binary Pb-Sn triiodine perovskite films. This was an effective method to make films with large and smooth grains. Using this new process to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, opens an avenue to grow perovskite materials with desired properties to enhance device performance.







Hybrid Organic-Inorganic Perovskites


Book Description

Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.




Organic-inorganic Hybrid Solar Cells Via Electropolymerization


Book Description

Integrating polymers with inorganic nanostructures is difficult due to wetting and surface energy considerations. We developed an electropolymerization method to grow conformal polymers on high aspect ratio nanostructures. Our method is shown to improve the polymer filling rate inside the nanostructures and can be used in the development of efficient hybrid solar cells. As an example, we have studied the hybrid system of electropolymerized polythiophene (e-PT) on a variety of conductive (Au and ITO) and semiconductive substrates (Si, Ge, ZnO). In particular, e-PT/ZnO hybrid structure can be further developed into organic photovoltaics (OPV). Although unsubstituted PT is not the ideal polymer material for high efficiency solar cells, it is an excellent choice for studying basic bonding and morphology in hybrid structures. We find that e-PT is covalently bound to the polar ZnO planar substrate via a Zn-S bond, adopting an upright geometry. By contrast, no strong covalent bonding was observed between e-PT and ZnO nanorods that consist of non-polar ZnO surfaces predominantly. Energy level alignment at interfaces is critical for fundamental understanding and optimization of OPV as band offsets of the donor and acceptor materials largely determine the open circuit voltage (Voc) of the device. Using ultraviolet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPS), we examined the correlation between energy alignment and photovoltaic properties of a model hybrid solar cell structure incorporating undoped electrodeposited polythiophene (e-PT) films on ZnO planar substrates. The electrolyte anion (BF4-, PF6-, ClO4- or CF3SO3- ) used in the electrodeposition solution was found to exert a strong influence on the neutral e-PT film morphology and adhesion, the band alignment at the interface, and ultimately the photovoltaic behavior. The interfacial dipole lowers polythiophene energy levels, increasing the theoretical and actual Voc in polythiophene/ZnO photovoltaics. Our electropolymerization approach to integrate the organic and inorganic phases aims at understanding the chemistry at the interface, and the electronic and morphological properties of the system. This work should be generally applicable to other conjugated polymers and nanostructures, and it contributes to an understanding of organic-inorganic interfaces and electronic structures that may be advantageous to a range of electronic/photonic applications.




Organic Solar Cells


Book Description

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.