Selection and Breeding Programs in Aquaculture


Book Description

Although aquaculture as a biological production system has a long history, systematic and efficient breeding programs to improve economically important traits in the farmed species have rarely been utilized until recently, except for salmonid species. This means that the majority of aquaculture production (more than 90 %) is based on genetically unimproved stocks. In farm animals the situation is vastly different: practically no terrestrial farm production is based on genetically unimproved and undomesticated populations. This difference between aquaculture and livestock production is in spite of the fact that the basic elements of breeding theory are the same for fish and shellfish as for farm animals. One possible reason for the difference is the complexity of reproductive biology in aquatic species, and special consideration needs to be taken in the design of breeding plans for these species. Since 1971 AKVAFORSK, has continuously carried out large scale breeding research projects with salmonid species, and during the latest 15 years also with a number of fresh water and marine species. Results from this work and the results from other institutions around the world have brought forward considerable knowledge, which make the development of efficient breeding programs feasible. The genetic improvement obtained in selection programs for fish and shellfish is remarkable and much higher than what has been achieved in terrestrial farm animals.




Selective Breeding in Aquaculture: an Introduction


Book Description

The foundation of quantitative genetics theory was developed during the last century and facilitated many successful breeding programs for cultivated plants and t- restrial livestock. The results have been almost universally impressive, and today nearly all agricultural production utilises genetically improved seed and animals. The aquaculture industry can learn a great deal from these experiences, because the basic theory behind selective breeding is the same for all species. The ?rst published selection experiments in aquaculture started in 1920 s to improve disease resistance in ?sh, but it was not before the 1970 s that the ?rst family based breeding program was initiated for Atlantic salmon in Norway by AKVAFORSK. Unfortunately, the subsequent implementation of selective breeding on a wider scale in aquaculture has been slow, and despite the dramatic gains that have been demonstrated in a number of species, less than 10% of world aquaculture production is currently based on improved stocks. For the long-term sustainability of aquaculture production, there is an urgent need to develop and implement e- cient breeding programs for all species under commercial production. The ability for aquaculture to successfully meet the demands of an ever increasing human p- ulation, will rely on genetically improved stocks that utilise feed, water and land resources in an ef?cient way. Technological advances like genome sequences of aquaculture species, and advanced molecular methods means that there are new and exciting prospects for building on these well-established methods into the future.










Biotechnologies at Work for Smallholders


Book Description

This book documents a unique series of 19 case studies where agricultural biotechnologies were used to serve the needs of smallholders in developing countries. They cover different regions, production systems, species and underlying socio-economic conditions in the crop (seven case studies), livestock (seven) and aquaculture/fisheries (five) sectors. Most of the case studies involve a single crop, livestock or fish species and a single biotechnology. Prepared by scientists and researchers who were directly involved in the initiatives, the authors were able to provide an insider's guide to the background, achievements, obstacles, challenges and lessons learned from each case study.







Cultivation of African Catfish (Clarias Gariepinus Burchell, 1822) in Recirculating Aquaculture Systems (RAS) in Northern Germany


Book Description

Within this work, the influence of stocking densities, grading strategies to cannibals, water quality, Montmorillonite-illite/Muscovite (1g557) as a feed additive and the use of process water for aquaponic plant production on production success was investigated experimentally using African catfish (Clarias gariepinus). Furthermore, it was calculated to what extent the survival rate and growth can differ under ideal and poor production conditions and what influence this has on production success.eng




Aquaponics Food Production Systems


Book Description

This open access book, written by world experts in aquaponics and related technologies, provides the authoritative and comprehensive overview of the key aquaculture and hydroponic and other integrated systems, socio-economic and environmental aspects. Aquaponic systems, which combine aquaculture and vegetable food production offer alternative technology solutions for a world that is increasingly under stress through population growth, urbanisation, water shortages, land and soil degradation, environmental pollution, world hunger and climate change.