Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors


Book Description

The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.




Modelling of Nuclear Reactor Multi-physics


Book Description

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book's subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. - Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference - Analyses the emerging area of multi-physics and multi-scale reactor modelling - Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding




Stability Analysis of the Boiling Water Reactor


Book Description

Density Wave Oscillations (DWOs) are known to be possible when a coolant undergoes considerable density reduction while passing through a heated channel. In the development of boiling water reactors (BWRs), there has been considerable concern about the effects of such oscillations when coupled with neutronic feedback. The current trend of increasing reactor power density and relying more extensively on natural circulation for core cooling may have consequences for the stability characteristics of new BWR designs. This work addresses a wide range of issues associated with the BWR stability: 1) flashing-induced instability and natural circulation BWR startup; 2) stability of the BWRs with advanced designs involving high power :densities; 3) modeling assumptions in stability analysis methods; and 4) the fuel clad performance during power and flow oscillations. To capture the effect of flashing on density wave oscillations during low pressure startup conditions, a code named FISTAB has been developed in the frequency domain. The code is based on a single channel thermal-hydraulic model of the balance of the water/steam circulation loop, and incorporates the pressure dependent water/steam thermodynamic properties, from which the evaporation due to flashing is captured. The functionality of the FISTAB code is confirmed by testing the experimental results at SIRIUS-N facility. Both stationary and perturbation results agree well with the experimental results. The proposed ESBWR start-up procedure under natural convection conditions has been examined by the FISTAB code. It is confirmed that the examined operating points along the ESBWR start-up trajectory from TRACG simulation will be stable. To avoid the instability resulting from the transition from single-phase natural circulation to two-phase circulation, a simple criterion is proposed for the natural convection BWR start-up when the steam dome pressure is still low. Using the frequency domain code STAB developed at MIT, stability analyses of some proposed advanced BWRs have been conducted, including the high power density BWR core designs using the Large Assembly with Small Pins (LASP) or Cross Shape Twisted (CST) fuel designs developed at MIT, and the Hitachi's RBWR cores utilizing a hard neutron spectrum and even higher power density cores. The STAB code is the predecessor of the FISTAB code, and thermodynamic properties of the coolant are only dependent on system pressure in STAB. It is concluded that good stability performance of the LASP core and the CST core can be maintained at nominal conditions, even though they have 20% higher reactor thermal power than the reference core. Power uprate does not seem to have significant effects on thermal-hydraulic stability performance when the power-to-flow ratio is maintained. Also, both the RBWR-AC and RBWR-TB2 designs are found viable from a stability performance point of view, even though the core exit qualities are almost 3 times those of a traditional BWR. The stability of the RBWRs is enhanced through the fast transient response of the shorter core, more flat power and power-to-flow ratio distributions, less negative void feedback coefficient, and the core inlet orifice design. To examine the capability of coupled 3D thermal-hydraulics and neutronics codes for stability analysis, USNRC's latest system analysis code, TRACE, is chosen in this work. Its validation for stability analysis and comparison with the frequency domain approach, have been performed against the Ringhals 1 stability tests. Comprehensive assessment of modeling choices on TRACE stability analysis has been made, including effects of timespatial discretization, numerical schemes, thermal-hydraulic channel grouping, neutronics modeling, and control system modeling. The predictions from both the TRACE and STAB codes are found in reasonably good agreement with the Ringhals 1 test results. The biases for the predicted global decay ratio are about 0.07 in TRACE results, and -0.04 in STAB results. However, the standard deviations of decay ratios are both large, around 0.1, indicating large uncertainties in both analyses. Although the TRACE code uses more sophisticated neutronic and thermal hydraulic models, the modeling uncertainty is not less than that of the STAB code. The benchmark results of both codes for the Ringhals stability test are at the same level of accuracy. The fuel cladding integrity during power oscillations without reactor scram is examined by using the FRAPTRAN code, with consideration of both the stress-strain criterion and thermal fatigue. Under the assumed power oscillation conditions for high burn-up fuel, the cladding can satisfy the stress-strain criteria in the ASME Code. Also, the equivalent alternating stress is below the fatigue threshold stress, thus the fatigue limit is not violated. It can be concluded that under a large amount of the undamped power oscillation cycles, the cladding would not fail, and the fuel integrity is not compromised.




Neutron Response Analysis in Pulsed Coupled-core Reactors


Book Description

In the Los Alamos Coupled Reactor Experiment, some oscillatory deviations from the expected monotonic increase were observed in the rising portion of the passive core neutron density response. In the present study, a generalized multigroup point kinetics model is employed to analyze the experiment. Several approximations with respect to the number of energy groups, the existence of a reflector, and the between-core neutron distribution function were studied. For some approximations, anomalies similar to those experimentally noticed were observed in the passive core response.




Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors


Book Description

Based on an IAEA coordinated research project focused on the use of passive safety systems and natural circulation to help meet the safety and economic goals of advanced nuclear power plants, this publication includes the identification and definition of the thermo-hydraulic phenomena that affect the reliability of passive safety systems, characterization of each phenomenon, integral tests to examine the passive systems and natural circulation, and a methodology for examining passive system reliability.




Numerical Techniques for Coupled Neutronic/thermal Hydraulic Nuclear Reactor Calculations


Book Description

The solution of coupled neutronic/thermal hydraulic nuclear reactor calculations requires the treatment of the nonlinear feedback induced by the thermal hydraulic dependence of the neutron cross sections. As a result of these nonlinearities, current solution techniques often diverge during the iteration process. These instabilities arise due to the low level of coupling achieved by these methods between the neutronic and thermal hydraulic components. In this work, this solution method is labeled the Decoupled Iteration (DI) method, and this technique is examined in an effort to improve its efficiency and stability. An examination of the DI method also serves to provide insight into the development of more highly coupled iteration methods. After the examination of several possible iteration procedures, two techniques are developed which achieve both a higher degree of coupling and stability. One such procedure is the Outer Iteration Coupling (OIC) method, which combines the outer iteration of the multigroup diffusion calculation with the controlling iteration of the thermal hydraulic calculations. The OIC method appears to be stable for all cases, while maintaining a high level of efficiency. Another iteration procedure developed is the Modified Axial Coupling (MAC) procedure, which couples the neutronic and thermal hydraulic components at the level of the axial position within the coolant channel. While the MAC method does achieve the highest level of coupling and stability, the efficiency of this technique is less than that of the other methods examined. Several characteristics of these coupled calculation methods are examined during the investigation. All methods are shown to be relatively insensitive to thermal hydraulic operating conditions, while the dependence upon convergence criteria is quite significant. It is demonstrated that the DI method does not converge for arbitrarily small convergence criteria, which is a result of a non-asymptotic solution approximation by the DI method. This asymptotic quality is achieved in the coupled methods. Thus, not only do the OIC and MAC techniques converge for small values of the relevant convergence criteria, but the computational expense of these methods is a predictable function of these criteria. The degree of stability of the iterative techniques is enhanced by a higher level of coupling, but the efficiency of these methods tends to decrease as a higher degree of coupling is achieved. This is apparent in the diminished efficiency of the MAC procedure. Seeking an optimum balance of efficiency and stability, the OIC technique is demonstrated to be the optimum method for coupled neutronic/thermal hydraulic reactor calculations.







Low-order Multiphysics Coupling Techniques for Nuclear Reactor Applications


Book Description

The accurate modeling and simulation of nuclear reactor designs depends greatly on the ability to couple differing sets of physics together. Current coupling techniques most often use a fixed-point, or Picard, iteration scheme in which each set of physics is solved separately, and the resulting solutions are passed between each solver. In the work presented here, two different coupling techniques are investigated: a Jacobian-Free Newton-Krylov (JFNK) approach and a new methodology called Coarse Mesh Finite Difference Coupling (CMFD-Coupling). What both of these techniques have in common is that they are applied to the low-order CMFD system of equations. This allows for the multiphysics feedback effects to be captured on the low-order system without having to perform a neutron transport solve.The JFNK and CMFD-Coupling approaches were implemented in the MPACT (Michigan Parallel Analysis based on Characteristic Tracing) neutron transport code, which is being developed for the Consortium for Advanced Simulation of Light Water Reactors (CASL). These methods were tested on a wide range of practical reactor physics problems, from a 2D pin cell to a massively parallel 3D full core problem. Initially, JFNK was implemented only as an eigenvalue solver without any feedback enabled. However this led to greatly increased runtimes without any obvious benefit. When multiphysics problems were investigated with both JFNK and CMFD-Coupling, it was concluded that CMFD-Coupling outperformed JFNK in terms of both accuracy and runtime for every problem. When applied to large full core problems with multiple sources of strong feedback enabled, CMFD-Coupling reduced the overall number of transport sweeps required for convergence.







INIS Atomindex


Book Description