Molecular Models for Fluids


Book Description

This book presents the development of modern molecular models for fluids from the interdisciplinary fundamentals of classical and statistical mechanics, of electrodynamics and of quantum mechanics. The concepts and working equations of the various fields are briefly derived and illustrated in the context of understanding the properties of molecular systems. Special emphasis is devoted to the quantum mechanical basis, since this is used throughout in the calculation of the molecular energy of a system. The book is application oriented. It stresses those elements that are essential for practical model development. The fundamentals are then used to derive models for various types of applications. Finally, equation of state models are presented based on quantum chemically based models for the intermolecular potential energy and perturbation theory. The book is suited for graduate courses in chemical and mechanical engineering, physics and chemistry, but may also, by proper selection, be found useful on the undergraduate level.




Molecular Modeling and Theory in Chemical Engineering


Book Description

In recent years chemical engineers have become increasingly involved in the design and synthesis of new materials and products as well as the development of biological processes and biomaterials. Such applications often demand that product properties be controlled with precision. Molecular modeling, simulating chemical and molecular structures or processes by computer, aids scientists in this endeavor. Volume 28 of Advances in Chemical Engineering presents discussions of theoretical and computational methods as well as their applications to specific technologies.




Tracer Technology


Book Description

The tracer method was first introduced to measure the actual flow of fluid in a vessel, and then to develop a suitable model to represent this flow. Such models are used to follow the flow of fluid in chemical reactors and other process units, in rivers and streams, and through soils and porous structures. Also, in medicine they are used to study the flow of chemicals, harmful or not, in the blood streams of animals and man. Tracer Technology, written by Octave Levenspiel, shows how we use tracers to follow the flow of fluids and then we develop a variety of models to represent these flows. This activity is called tracer technology.




Foundations of Molecular Modeling and Simulation


Book Description

This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.




Molecular Systems Engineering


Book Description

Inspired by the leading authority in the field, the Centre for Process Systems Engineering at Imperial College London, this book includes theoretical developments, algorithms, methodologies and tools in process systems engineering and applications from the chemical, energy, molecular, biomedical and other areas. It spans a whole range of length scales seen in manufacturing industries, from molecular and nanoscale phenomena to enterprise-wide optimization and control. As such, this will appeal to a broad readership, since the topic applies not only to all technical processes but also due to the interdisciplinary expertise required to solve the challenge. The ultimate reference for years to come.




Modeling of Process Intensification


Book Description

Combining the knowledge involved in process engineering and process modeling, this is the first book to cover all modeling methods applicable to process intensification. Both the editors and authors are renowned experts from industry and academia in the various fields of process modeling and integrated chemical processes. Following an introduction to the topic, the book goes on to look at equipment and operational methods, monolithic catalysis, HEX, micro- and reverse flow reactors, catalytic and reactive distillation, the simulated-moving bed and vibration bubble column as well as ultrasound and ultrasonic reactors. A final chapter is devoted to processes under supercritical conditions. In its treatment of hot topics of multidisciplinary interest, this book is of great value to researchers and engineers alike.




Molecular Modeling and Theory in Chemical Engineering


Book Description

A useful reference for the practising engineer or material scientist This volume presents discussions of theoretical and computational methods as well as their applications to specific technologies such as catalysis, microstructured polymeric materials, biological materials, directed evolution of proteins, microelectronics processing, and combinatorial chemistry. This paperback serves as a handy, essential reference for the practicing chemical engineer, chemist, or materials scientist interested in learning about current capabilities of theory and computation in complementing experimental research aimed toward the design of new products. This paperback edition is adapted from the serial Advances in Chemical Engineering, Volume 28, 2001 ISBN: 0-12-008528-3.




Fluid Properties at Nano/Meso Scale


Book Description

Today’s scientific and engineering community has a good grasp on how to model fluid flows at macro and molecular scales, with well-developed theory and supporting technologies. Between these two extremes lies the nano/meso scale (i.e. in the range of 50nm-500nm) where fluid flow models continue to be problematic. Continuum models used at macro scales assume a negligible influence from molecular interactions, while molecular models do not predict flow well at nano/meso dimensions. The solution, and the subject of this book, is to use elements from both to capture correctly the proper physics (from the molecular scale) and provide a description in terms of useful fluid properties (as characterized on the continuum scale). Fluid Properties at Nano/Meso Scale is based on the authors’ past five years’ research that has yielded new innovations in fluid simulation strategies at the nano/meso scale. The authors approach this subject in a straightforward and easy to understand format, providing a first step into the subject for researchers at all levels. They present new tools that allow the numerical computation of fluid properties from first principles, enabling the reader to begin to model successfully fluids at nano/meso scale. It is hoped that these first steps will engender the further development and advancement of simulation techniques at this scale, and keep engineering simulation at the cutting edge of technology. Presents internationally leading developments in the field of fluid properties at nano/meso scale Provides the reader with the first steps to fluid modelling at nano/meso-scales as well as state-of-the-art applications Includes innovative and new simulation techniques along with a detailed examination of existing numerical methods