PEM Fuel Cell Electrocatalysts and Catalyst Layers


Book Description

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.




Development of New Generation Eletrocatalysts for the Oxygen Reduction Reaction


Book Description

Development of non-precious metal catalysts (NPMCs) has become a well-known strategy to replace the platinum-based catalysts for the oxygen reduction reactions at the cathode of fuel cells, metal-air batteries and air-breathing cathodes in industrial electrocatalytic processes. There are two crucial factors governing the performance of carbon based catalysts. One is the intrinsic nature of the active sites which are determined by the selection of the doping elements. Another important factor is the large specific area and porous structure feature which can introduce more active sites and promote the electrons and oxygen species transportation. Among numerous carbon-based electrode materials, hollow carbonaceous spheres have attracted attention due to the high surface-to-volume ratios and more accessible active sites on the shell. Here, hierarchical porous carbon-nanoshells with about 40 nm cavities are synthesized by using CdS@mSiO2 core-shell structured materials as hard templates and 4, 4'-bipyridine, FeCl3 as nitrogen, carbon and iron sources. This method demonstrates outstanding stability and electrocatalytic activity for ORR. Moreover, Metal-organic frameworks (MOFs) as new classes of crystalline porous materials with high surface area, large pore volume and uniform pore distribution can be suitable candidates as precursors and/or templates for the formation of high quality porous carbons for ORR application. The diversity in types of metal ions and organic ligands in MOFs with cavities and pore spaces make them versatile precursors and/or templates for the synthesis of carbon/metal oxide composites and doped carbon-metal materials. Apart from the above-mentioned advantages, there are some open coordination sites on the metals species or functional groups in the ligands of the developed MOFs. Those open coordination sites can function as the specific interaction sites and be further utilized for the post-synthesis to introduce different heteroatoms with different coordination environments and different functionalities. Targeted species, like metals, heterometals and heteroatoms can be integrated into the targeted materials via different interactions to further maximize the electrocatalytic activities of the synthesized materials.




Electrocatalysts for Fuel Cells and Hydrogen Evolution


Book Description

The book starts with a theoretical understanding of electrocatalysis in the framework of density functional theory followed by a vivid review of oxygen reduction reactions. A special emphasis has been placed on electrocatalysts for a proton-exchange membrane-based fuel cell where graphene with noble metal dispersion plays a significant role in electron transfer at thermodynamically favourable conditions. The latter part of the book deals with two 2D materials with high economic viability and process ability and MoS2 and WS2 for their prospects in water-splitting from renewable energy.




Oxide Surfaces


Book Description

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.







Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions


Book Description

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.




Oxygen Reduction Reaction


Book Description

Oxygen Reduction Reaction: Fundamentals, Materials and Applications covers the design, synthesis and performance efficacies of the entire spectrum of oxygen reduction catalysts, extrapolating down to their applications in practical, alternative, renewable energy devices. Catalysts covered include heme inspired iron-based, heme inspired non-iron-based, non-heme-based, noble metal-based, non-noble metal-based and metal-free homogeneous and heterogeneous catalysts. The book contains critical analyses and opinions from experts around the world, making it of interest to scientists, engineers, industrialists, entrepreneurs and students. Discusses the fundamental aspects of oxygen reduction reactions Offers a comprehensive analysis of the choice and development of catalyst materials for oxygen reduction reaction Reviews emerging catalyst systems for oxygen reduction reaction Includes analyses of catalytic performance parameters to evaluate their efficacy in oxygen reduction reactions under varied operating conditions Covers the importance of oxygen reduction reaction catalysts and processes in real-life applications




Advanced Catalytic Materials


Book Description

Todays chemical industry processes worldwide largely depend on catalytic reactions and the desirable future evolution of this industry toward more selective products, more environmentally friendly products, more energy-efficient processes, a smaller use of hazardous reagents, and a better use of raw materials also largely involves the development of better catalysts and, specifically, purposely designed catalytic materials. The careful study and development of the new-generation catalysts involve relatively large groups of specialists in universities, research centers, and industries, joining forces from different scientific and technical disciplines. This book has put together recent, state-of-the-art topics on current trends in catalytic materials and consists of 16 chapters.




Advanced Electrocatalysts for Low-Temperature Fuel Cells


Book Description

This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.




Platinum Monolayer Electrocatalysts


Book Description

This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.