Development of Online Hybrid Testing


Book Description

Development of Online Hybrid Testing: Theory and Applications to Structural Engineering provides comprehensive treatments of several topics pertinent to substructure online hybrid tests. Emphasis has been placed on explaining the three frameworks: - the host-station framework, - separated model framework and - peer to peer framework These have been developed within the Internet environment and are particularly suitable for distributed hybrid testing. In order to help readers to understand the essence of online hybrid testing and further to build up their own systems, an engineering practice has been introduced at the end of this book with the source code appended. Development of Online Hybrid Testing: Theory and Applications to Structural Engineering is primarily written for readers with some background in structural dynamics, finite elements, and computer science. Material that has previously only appeared in journal articles has been consolidated and simplified which provides the reader with a perspective of the state-of-the-art. - Presents basics and implementations of time integration algorithms for online hybrid tests, along with the applications for real engineering projects - Includes current progress on the development of substructure online hybrid tests as a means of investigating the seismic behaviour of large-scale structures - Provides source code for the example tests




Hybrid Simulation


Book Description

Hybrid Simulation: Theory, Implementation and Applications deals with a rapidly evolving technology combining computer simulation (typically finite element) and physical laboratory testing of two complementary substructures. It is a multidisciplinary technology which relies heavily on control theory, computer science, numerical techniques and finds applications in aerospace, civil, and mechanical engineering.




Advances in Performance-Based Earthquake Engineering


Book Description

Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.







Multi-axis Substructure Testing System for Hybrid Simulation


Book Description

This book describes the multi-axis substructure testing (MAST) system, a simulator developed at Swinburne University of Technology, Australia, which provides state-of-the-art technology for large-scale hybrid testing of structures under realistic scenarios depicting extreme events. The book also demonstrates the responses of physical specimens while they serve as part of the virtual computer model of the full structure subjected to extreme dynamic forces. Experimental studies using the MAST system are expected to enhance design and construction methods and significantly improve the repair and retrofitting of structures endangered by natural disasters and man-made hazards, providing a direct benefit to society by improving public safety and the re silience of the built environment. An additional benefit is increased sustainability in the form of reduced direct and indirect economic losses and social and environmental impacts in the face of extreme events. This book will be of interest to researchers and advanced practitioners in the fields of structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.




Physical Modelling in Geotechnics, Volume 1


Book Description

Physical Modelling in Geotechnics collects more than 1500 pages of peer-reviewed papers written by researchers from over 30 countries, and presented at the 9th International Conference on Physical Modelling in Geotechnics 2018 (City, University of London, UK 17-20 July 2018). The ICPMG series has grown such that two volumes of proceedings were required to publish all contributions. The books represent a substantial body of work in four years. Physical Modelling in Geotechnics contains 230 papers, including eight keynote and themed lectures representing the state-of-the-art in physical modelling research in aspects as diverse as fundamental modelling including sensors, imaging, modelling techniques and scaling, onshore and offshore foundations, dams and embankments, retaining walls and deep excavations, ground improvement and environmental engineering, tunnels and geohazards including significant contributions in the area of seismic engineering. ISSMGE TC104 have identified areas for special attention including education in physical modelling and the promotion of physical modelling to industry. With this in mind there is a special themed paper on education, focusing on both undergraduate and postgraduate teaching as well as practicing geotechnical engineers. Physical modelling has entered a new era with the advent of exciting work on real time interfaces between physical and numerical modelling and the growth of facilities and expertise that enable development of so called ‘megafuges’ of 1000gtonne capacity or more; capable of modelling the largest and most complex of geotechnical challenges. Physical Modelling in Geotechnics will be of interest to professionals, engineers and academics interested or involved in geotechnics, geotechnical engineering and related areas. The 9th International Conference on Physical Modelling in Geotechnics was organised by the Multi Scale Geotechnical Engineering Research Centre at City, University of London under the auspices of Technical Committee 104 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). City, University of London, are pleased to host the prestigious international conference for the first time having initiated and hosted the first regional conference, Eurofuge, ten years ago in 2008. Quadrennial regional conferences in both Europe and Asia are now well established events giving doctoral researchers, in particular, the opportunity to attend an international conference in this rapidly evolving specialist area. This is volume 1 of a 2-volume set.




Dynamic Response of Infrastructure to Environmentally Induced Loads


Book Description

This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the emphasis is on the most significant recent advances and new material. The book comprises extended versions of contributions delivered at the DE-GRIE Lab Workshop 2014, held in Thessaloniki, Greece, in November 2014.




Resilience and Sustainability of Civil Infrastructures under Extreme Loads


Book Description

There are many regions worldwide which are susceptible to extreme loads such as earthquakes. These can cause loss of life and adverse impacts on civil infrastructures, the environment, and communities. A series of methods and measures have been used to mitigate the effects of these extreme loads. The adopted approaches and methods must enable civil structures to be resilient and sustainable. Therefore, to reduce damage and downtime in addition to protecting life and promoting safety, new resilient structure technologies must be proposed and developed. This special issue book focuses on methods of enhancing the sustainability and resilience of civil infrastructures in the event of extreme loads (e.g., earthquakes). This book contributes proposals of and theoretical, numerical, and experimental research on new and resilient civil structures and their structural performance under extreme loading events. These works will certainly play a significant role in promoting the application of new recoverable structures. Moreover, this book also introduces some case studies discussing the implementation of low-damage structural systems in buildings as well as articles on the development of design philosophies and performance criteria for resilient buildings and new sustainable communities.




Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8


Book Description

Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8.Proceedings of the 34th IMAC, A Conference and Exposition on Dynamics of Multiphysical Systems: From Active Materials to Vibroacoustics, 2016, the eighth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: • Processing Modal Data • Rotating Machinery • Vibro Acoustics • Laser Vibrometry • Teaching Practices • Hybrid Testing • Reduced Order Modeling




Progress in Mechanics of Structures and Materials


Book Description

This is a collection of peer-reviewed papers originally presented at the 19th Australasian Conference on the Mechanics of Structures and Materials by academics, researchers and practitioners largely from Australasia and the Asia-Pacific region. The topics under discussion include: composite structures and materials; computational mechanics; dynamic analysis of structures; earthquake engineering; fire engineering; geomechanics and foundation engineering; mechanics of materials; reinforced and prestressed concrete structures; shock and impact loading; steel structures; structural health monitoring and damage identification; structural mechanics; and timber engineering. It is a valuable reference for academics, researchers, and civil and mechanical engineers working in structural and material engineering and mechanics.