Development of Operational Strategies for Travel Time Estimation and Emergency Evacuation on a Freeway Network


Book Description

This research studied the feasibility of applying a dynamic traffic assignment model, Dynasmart-P, for evaluating the effectiveness of alternative strategies for evacuating the traffic in downtown Minneapolis, Minnesota, under a hypothetical emergency situation that included the evacuation of the sell-out crowd in the Metrodome. For this study, the southwest portion of the Twin Cities metro area was selected as the study network and a set of different network configurations were evaluated in terms of their effectiveness in coping with a given emergency situation. The simulation results indicate that managing traffic conditions at the outbound freeway links in the given network during the evacuation period and the access capacity from the downtown area to those outbound freeway links are the critical factors affecting the effectiveness of evacuation operations. For example, the evacuation time under the contra-flow operations with the freeways surrounding the downtown area was substantially reduced when the capacities of the key entrance ramps were also increased. Further, an enhanced snap-shot-speed based, on-line travel time estimation strategy was developed and tested at the selected freeway corridors in the Twin Cities' metro freeway network. The off-line testing results of the proposed method showed acceptable performance during the traffic transition periods for the freeway sections up to 12-mile length.




Highway Travel Time Estimation With Data Fusion


Book Description

This monograph presents a simple, innovative approach for the measurement and short-term prediction of highway travel times based on the fusion of inductive loop detector and toll ticket data. The methodology is generic and not technologically captive, allowing it to be easily generalized for other equivalent types of data. The book shows how Bayesian analysis can be used to obtain fused estimates that are more reliable than the original inputs, overcoming some of the drawbacks of travel-time estimations based on unique data sources. The developed methodology adds value and obtains the maximum (in terms of travel time estimation) from the available data, without recurrent and costly requirements for additional data. The application of the algorithms to empirical testing in the AP-7 toll highway in Barcelona proves that it is possible to develop an accurate real-time, travel-time information system on closed-toll highways with the existing surveillance equipment, suggesting that highway operators might provide their customers with such an added value with little additional investment in technology.




The Evolution of Travel Time Information Systems


Book Description

This book deals with the estimation of travel time in a very comprehensive and exhaustive way. Travel time information is and will continue to be one key indicator of the quality of service of a road network and a highly valued knowledge for drivers. Moreover, travel times are key inputs for comprehensive traffic management systems. All the above-mentioned aspects are covered in this book. The first chapters expound on the different types of travel time information that traffic management centers work with, their estimation, their utility and their dissemination. They also remark those aspects in which this information should be improved, especially considering future cooperative driving environments.Next, the book introduces and validates two new methodologies designed to improve current travel time information systems, which additionally have a high degree of applicability: since they use data from widely disseminated sources, they could be immediately implemented by many administrations without the need for large investments. Finally, travel times are addressed in the context of dynamic traffic management systems. The evolution of these systems in parallel with technological and communication advancements is thoroughly discussed. Special attention is paid to data analytics and models, including data-driven approaches, aimed at understanding and predicting travel patterns in urban scenarios. Additionally, the role of dynamic origin-to-destination matrices in these schemes is analyzed in detail.




Mathematical Models for Evacuation Planning in Urban Areas


Book Description

Disasters like floods, hurricanes, chemical or nuclear accidents may cause the necessity to evacuate the affected area. The evacuation of the urban area needs to be planned carefully. One issue is the reorganization of the traffic routing. Congested urban areas have usually complex street networks that are composed of many intersections with streets connecting them. The population density of a congested urban area is usually high and the street network is already used to capacity during rush hour traffic. The considered problem of this work is the reorganization of the traffic routing of an urban area for the case of an emergency mass evacuation. Especially aspects of the evacuation like safety, avoidance of delays and the total system travel time are taken into account. Combinatorial and graph theoretical aspects are adapted for the evacuation problem and highlight issues concerning especially conflicts within intersections. This work gives an extensive summary of literature of evacuation of urban areas. Mixed-integer linear programming models are developed for evacuation problems and heuristic algorithms are provided and tested.?







International Encyclopedia of Transportation


Book Description

In an increasingly globalised world, despite reductions in costs and time, transportation has become even more important as a facilitator of economic and human interaction; this is reflected in technical advances in transportation systems, increasing interest in how transportation interacts with society and the need to provide novel approaches to understanding its impacts. This has become particularly acute with the impact that Covid-19 has had on transportation across the world, at local, national and international levels. Encyclopedia of Transportation, Seven Volume Set - containing almost 600 articles - brings a cross-cutting and integrated approach to all aspects of transportation from a variety of interdisciplinary fields including engineering, operations research, economics, geography and sociology in order to understand the changes taking place. Emphasising the interaction between these different aspects of research, it offers new solutions to modern-day problems related to transportation. Each of its nine sections is based around familiar themes, but brings together the views of experts from different disciplinary perspectives. Each section is edited by a subject expert who has commissioned articles from a range of authors representing different disciplines, different parts of the world and different social perspectives. The nine sections are structured around the following themes: Transport Modes; Freight Transport and Logistics; Transport Safety and Security; Transport Economics; Traffic Management; Transport Modelling and Data Management; Transport Policy and Planning; Transport Psychology; Sustainability and Health Issues in Transportation. Some articles provide a technical introduction to a topic whilst others provide a bridge between topics or a more future-oriented view of new research areas or challenges. The end result is a reference work that offers researchers and practitioners new approaches, new ways of thinking and novel solutions to problems. All-encompassing and expertly authored, this outstanding reference work will be essential reading for all students and researchers interested in transportation and its global impact in what is a very uncertain world. Provides a forward looking and integrated approach to transportation Updated with future technological impacts, such as self-driving vehicles, cyber-physical systems and big data analytics Includes comprehensive coverage Presents a worldwide approach, including sets of comparative studies and applications




Guide for All-Hazard Emergency Operations Planning


Book Description

Meant to aid State & local emergency managers in their efforts to develop & maintain a viable all-hazard emergency operations plan. This guide clarifies the preparedness, response, & short-term recovery planning elements that warrant inclusion in emergency operations plans. It offers the best judgment & recommendations on how to deal with the entire planning process -- from forming a planning team to writing the plan. Specific topics of discussion include: preliminary considerations, the planning process, emergency operations plan format, basic plan content, functional annex content, hazard-unique planning, & linking Federal & State operations.




Real-Time Traffic Information for Emergency Evacuation Operations


Book Description

There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors is also equipped with their own power supply and a GPS (Global Positioning System) device to auto-determine its spatial location on the transportation network under surveillance. The system is capable of assessing traffic parameters by identifying and re-identifying vehicles in the traffic stream as those vehicles pass over the sensors. The system of sensors transmits, through wireless communication, real-time traffic information (travel time and other parameters) to a command and control center via an NTCIP (National Transportation Communication for ITS Protocol) -compatible interface. As an alternative, an existing NTCIP-compatible system accepts the real-time traffic information mentioned and broadcasts the traffic information to emergency managers, the media and the public via the existing channels. A series of tests, both in a controlled environment and on the field, were conducted to study the feasibility of rapidly deploying the system of traffic sensors and to assess its ability to provide real-time traffic information during an emergency evacuation. The results of these tests indicated that the prototype sensors are reliable and accurate for the type of application that is the focus of this project.




Developing and Maintaining Emergency Operations Plans


Book Description

Comprehensive Preparedness Guide (CPG) 101 provides guidelines on developing emergency operations plans (EOP). It promotes a common understanding of the fundamentals of risk-informed planning and decision making to help planners examine a hazard or threat and produce integrated, coordinated, and synchronized plans. The goal of CPG 101 is to make the planning process routine across all phases of emergency management and for all homeland security mission areas. This Guide helps planners at all levels of government in their efforts to develop and maintain viable all-hazards, all-threats EOPs. Accomplished properly, planning provides a methodical way to engage the whole community in thinking through the life cycle of a potential crisis, determining required capabilities, and establishing a framework for roles and responsibilities. It shapes how a community envisions and shares a desired outcome, selects effective ways to achieve it, and communicates expected results. Each jurisdiction's plans must reflect what that community will do to address its specific risks with the unique resources it has or can obtain.