Development of Polymers for Electroplating Waste Water Purification, Polymer-Supported Reagents for Organic Synthesis and Heterogeneous Catalysts for Aerobic Alcohol Oxidation Reactions


Book Description

This dissertation, "Development of Polymers for Electroplating Waste Water Purification, Polymer-supported Reagents for Organic Synthesis and Heterogeneous Catalysts for Aerobic Alcohol Oxidation Reactions" by Die, Daisy, Yang, 楊蝶, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b3984888 Subjects: Thiourea Polymers Supported reagents Catalysts Sewage - Purification - Heavy metals removal













Redox Polymers for Energy and Nanomedicine


Book Description

Redox Polymers for Energy and Nanomedicine highlights trends in the chemistry, characterization and application of polymers with redox properties.







Synthesis, Development and Investigation of Conducting Polymer Based Heterojunctions as Photostimulated Electrocatalysts


Book Description

The demand for a clean, sustainable energy future has motivated the scientific community to research alternative sources of power. Energy is vital to the growth and quality of our civilization and is the origin of the nexus of major issues facing the world today. Issues such as clean water, adequate food, spread of disease, armed conflict and an increasing global population could be resolved if energy was cheap, abundant and available. The use of energy carriers such as petroleum and diesel consume a finite fuel resource while polluting the environment. Among the alternative fuels that have been proposed, hydrogen is a prominent energy carrier recognised for being clean and sustainable. Currently, the majority of the world's hydrogen supply is provided via the steam reforming of methane. This process, like petroleum and diesel, remains limited by a finite resource while impacting on the environment. Unlocking hydrogen from water via electrolysis is seen by many as the preferred, environmentally sustainable alternative. Unfortunately, water electrolysis is an energy intensive process and remains difficult and expensive. The half-reactions that amount to the overall water electrolysis reaction are the proton reduction and water oxidation reactions. Water oxidation is identified as the main consumer of excess energy (overpotential) required for the overall reaction, due to its four-electron, stepwise process. One approach to overcome the energy required is the use of sunlight to assist or drive electrochemical water-splitting. By developing a photostimulated electrode, the sun can reduce the energy required to split water for hydrogen production. Current photostimulated electrodes or photoanodes involve the use of semiconducting inorganic compounds such as metal oxides. While these inorganic photoanodes are advancing, some require rare and expensive compounds that can impact on the environment. This work developed an organic photoelectrode based upon conjugated polymer junctions to target electrochemical reactions, primarily, the energy intensive water oxidation reaction. Selected for their semiconducting properties, the conjugated polymers were synthesised to form an interpenetrating composite material producing junctions between polymer species. Poly(thieno[3,2-b]thiophene) (PTT) and poly(dithieno[3,2-b:2',3'-d]thiophene) (PDTT) were selected as donor materials for their adequate absorption in the visible range (~500 nm) and synthesised via vapour phase polymerisation (VPP). Both PTT and PDTT were separately blended with poly(3,4-ethylenedioxythiophene) (PEDOT) to form composite alloy materials. PEDOT was selected as a catalytic component and, due to its hole transport capabilities, provides a junction to aid in charge separation, avoiding charge recombination. A multistep VPP process was used to form the alloy materials. This approach allowed a polymer layer (e.g. PEDOT) to be oxidatively polymerised onto a substrate before being suspended in a selected monomer vapour (e.g. PTT or PDTT) chamber. This allowed the monomer to polymerise with the residual oxidant within the initial polymer for a greater interpenetrating network. This was seen as the most productive method for the manufacture of heterojunction materials. Additionally, PTT and PDTT had not previously been polymerised via a vapour phase route. Spectroscopic characterisation indicated a certain level of spontaneous interaction between the blended polymers in the alloy materials obtained, while electrochemical testing demonstrated light enhanced water electrolysis. Further investigation revealed an enhanced electrochemical performance upon annealing these alloy materials and indications of susceptibility to humidity were found. The design of the aforementioned alloy materials to achieve junctions between polymer species is based on the well-known organic photovoltaic materials. As such, it was of value to investigate a well-established bulk heterojunction material, poly(3-hexylthiophene) (P3HT) and phenyl-C61-Butyric acid Methyl ester (PCBM), as an organic photo-electrode. Housing a working heterojunction relationship between P3HT:PCBM, these organic photovoltaic structures offered a suitable platform to support the proof-of-concept of a heterojunction based organic photoelectrode. Investigated in the context of the water electrolysis reaction, a photo-enhanced effect was observed confirming the participation of the active heterojunction in separating and transporting charges for use in electrochemical reactions. Overall, this study presents strong evidence that an organic photoelectrode based upon a heterojunction structure can be synthesised and applied to electrochemical reactions. Thus, a novel avenue is made available in the field of electrocatalysis for future pursuit and development.







Treatment of Micropollutants in Water and Wastewater


Book Description

Over the last few years there has been a growing concern over the increasing concentration of micropollutants originating from a great variety of sources including pharmaceutical, chemical engineering and personal care product industries in rivers, lakes, soil and groundwater. As most of the micropollutants are polar and persistent compounds, they are only partially or not at all removed from wastewater and thus can enter the environment posing a great risk to the biota. It is hypothesized that wastewater is one of the most important point sources for micropollutants. Treatment of Micropollutants in Water and Wastewater gives a comprehensive overview of modern analytical methods and will summarize novel single and hybrid methods to remove continuously emerging contaminants - micropollutants from the aqueous phase. New trends (e.g. sensor technology, nanotechnology and hybrid treatment technologies) are described in detail. The book is very timely because the new techniques are still in the development phase and have to be realized not only in the laboratory but also on a larger scale. The content of the book is divided into chapters that present current descriptive and analytical methods that are available to detect and measure micropollutants together with detailed information on various chemical, biological and physicochemical methods that have evolved over the last few decades. Treatment of Micropollutants in Water and Wastewater will also enable readers to make well informed choices through providing an understanding of why and how micropollutants must be removed from water sources, and what are the most appropriate and available techniques for providing a cost and technologically effective and sustainable solutions for reaching the goal of micropollutant-free water and wastewater. The book will be suitable for water and wastewater professionals as well for students and researchers in civil engineering, environmental engineering and process engineering fields.




Catalyst Separation, Recovery and Recycling


Book Description

This book looks at new ways of tackling the problem of separating reaction products from homogeneous catalytic solutions. The new processes involve low leaching supported catalysts, soluble supports such as polymers and dendrimers and unusual solvents such as water, fluorinated organics, ionic liquids and supercritical fluids. The advantages of the different possibilities are discussed alongside suggestions for further research that will be required for commercialisation. Unlike other books, in addition to the chemistry involved, the book looks at the process design that would be required to bring the new approaches to fruition. Comparisons are given with existing processes that have already been successfully applied and examples are given where these approaches are not suitable. The book includes: - New processes for the separation of products from solutions containing homogeneous catalysts - Catalysts on insoluble or soluble supports – fixed bed catalysts - continuous flow or ultrafiltration - Biphasic systems: water - organic, fluorous - organic, ionic liquid – organic, supercritical fluids (monophasic or biphasic with water, organic or ionic liquid) - Comparisons with current processes involving atmospheric or low temperature distillation - Consideration of Chemistry and Process Design - Advantages and disadvantages of each process exposed - Consideration of what else is need for commercialisation