Developments in Model-Based Optimization and Control


Book Description

This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.




Advanced and Optimization Based Sliding Mode Control: Theory and Applications


Book Description

A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.




Model Development and Optimization


Book Description

At present, concerning intensive development of computer hardware and software, computer-based methods for modeling of difficult problems have become the main technique for theoretical and applied investigations. Many unsolved tasks for evolutionary systems (ES) are an important class of such problems. ES relate to economic systems on the whole and separate branches and businesses, scientific and art centers, ecological systems, populations, separate species of animals and plants, human organisms, different subsystems of organisms, cells of animals and plants, and soon. Available methods for modeling of complex systems have received considerable attention and led to significant results. No large-scale programs are done without methods of modeling today. Power programs, health programs, cosmos investigations, economy designs, etc. are a few examples of such programs. Nevertheless, in connection with the permanent complication of contemporary problems, existing means are in need of subsequent renovation and perfection. In the monograph, along with analysis of contemporary means, new classes of mathematical models (MM) which can be used for modeling in the most difficult cases are proposed and justified. The main peculiarities of these MM offer possibilities for the description ofES; creation and restoration processes; dynamics of elimination or reservation of obsolete technology in ES; dynamics of resources distribution for fulfillment of internal and external functions ofES; and so on. The complexity of the problems allows us to refer to the theory and applications of these MM as the mathematical theory of development. For simplicity, the title "Model Development and Optimization" was adopted.




Surrogate-Based Modeling and Optimization


Book Description

Contemporary engineering design is heavily based on computer simulations. Accurate, high-fidelity simulations are used not only for design verification but, even more importantly, to adjust parameters of the system to have it meet given performance requirements. Unfortunately, accurate simulations are often computationally very expensive with evaluation times as long as hours or even days per design, making design automation using conventional methods impractical. These and other problems can be alleviated by the development and employment of so-called surrogates that reliably represent the expensive, simulation-based model of the system or device of interest but they are much more reasonable and analytically tractable. This volume features surrogate-based modeling and optimization techniques, and their applications for solving difficult and computationally expensive engineering design problems. It begins by presenting the basic concepts and formulations of the surrogate-based modeling and optimization paradigm and then discusses relevant modeling techniques, optimization algorithms and design procedures, as well as state-of-the-art developments. The chapters are self-contained with basic concepts and formulations along with applications and examples. The book will be useful to researchers in engineering and mathematics, in particular those who employ computationally heavy simulations in their design work.




Advances in Mathematical Modeling, Optimization and Optimal Control


Book Description

This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Sokołowski and Antoni Żochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.




Real-Time Optimization


Book Description

This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes




Optimization and Control Methods in Industrial Engineering and Construction


Book Description

This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and construction management.




Modeling, Control, and Optimization of Natural Gas Processing Plants


Book Description

Modeling, Control, and Optimization of Natural Gas Processing Plants presents the latest on the evolution of the natural gas industry, shining a light on the unique challenges plant managers and owners face when looking for ways to optimize plant performance and efficiency, including topics such as the various feed gas compositions, temperatures, pressures, and throughput capacities that keep them looking for better decision support tools. The book delivers the first reference focused strictly on the fast-growing natural gas markets. Whether you are trying to magnify your plants existing capabilities or are designing a new facility to handle more feedstock options, this reference guides you by combining modeling control and optimization strategies with the latest developments within the natural gas industry, including the very latest in algorithms, software, and real-world case studies. - Helps users adapt their natural gas plant quickly with optimization strategies and advanced control methods - Presents real-world application for gas process operations with software and algorithm comparisons and practical case studies - Provides coverage on multivariable control and optimization on existing equipment - Allows plant managers and owners the tools they need to maximize the value of the natural gas produced




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.




Optimization and Control of Dynamic Systems


Book Description

This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.