Developments in Polymer Characterisation


Book Description

The policy adopted in Volume 1 of this series of including a relatively small number of topics for detailed review has been continued here. The techniques selected have received considerable attention in recent years. F or this reason and because of the significance of the characterisation data, further coverage of 13C nuclear magnetic resonance spectroscopy and small angle neutron scattering is given in the first two chapters. In Chapter I a large part of the review describes the determination of monomer sequence distributions and configurational sequences in copolymers formed from more than one polymerisable monomer. The review on neutron scattering (Chapter 2) is directed towards the determination of the chain conformation in semi-crystaIIine polymers, which has provided important results for the interpretation of chain folding and morphology in crystaIIisable polymers. Laser Raman spectroscopy has also been used for morphological studies, and this application together with a description of the theoretical and experimental aspects of the technique is given in Chapter 3. X-ray photoelectron spectroscopy because of its extreme sensitivity to surface characteristics has provided information on polymeric solids that could not be obtained by other techniques. The principles and practice of this ESCA technique, including its use for simple elemental analysis, structural elucidation and depth profiling, are described in Chapter 4. The final two chapters are mainly concerned with the chain conformation of polymers in dilute solution. Ultrasonic techniques (Chapter 5) show pmmise for observing the dynamics of conformational changes.







Polymer Characterisation


Book Description

Polymers continue to play an ever increasing role in the modern world. In fact it is quite inconceivable to most people that we could ever have existed of the increased volume and variety of materials without them. As a result currently available, and the diversity of their application, characterisation has become an essential requirement of industrial and academic laboratories in volved with polymeric materials. On the one hand requirements may come from polymer specialists involved in the design and synthesis of new materials who require a detailed understanding of the relationship between the precise molecular architecture and the properties of the polymer in order to improve its capabilities and range of applications. On the other hand, many analysts who are not polymer specialists are faced with the problems of analysing and testing a wide range of polymeric materials for quality control or material specification purposes. We hope this book will be a useful reference for all scientists and techno or industrial laboratories, logists involved with polymers, whether in academic and irrespective of their scientific discipline. We have attempted to include in one volume all of the most important techniques. Obviously it is not possible to do this in any great depth but we have encouraged the use of specific examples to illustrate the range of possibilities. In addition numerous references are given to more detailed texts on specific subjects, to direct the reader where appropriate. The book is divided into II chapters.




Characterization and Failure Analysis of Plastics


Book Description

The selection and application of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This reference book on engineering plastics provides practical and comprehensive coverage on how the performance of plastics is characterized during design, property testing, and failure analysis. The fundamental structure and properties of plastics are reviewed for general reference, and detailed articles describe the important design factors, properties, and failure mechanisms of plastics. The effects of composition, processing, and structure are detailed in articles on the physical, chemical, thermal, and mechanical properties. Other articles cover failure mechanisms such as: crazing and fracture; impact loading; fatigue failure; wear failures, moisture related failure; organic chemical related failure; photolytic degradation; and microbial degradation. Characterization of plastics in failure analysis is described with additional articles on analysis of structure, surface analysis, and fractography.




Recent Advances in Analytical Techniques: Volume 4


Book Description

Recent Advances in Analytical Techniques is a series of updates in techniques used in chemical analysis. Each volume presents a selection of chapters that explain different analytical techniques and their use in applied research. Readers will find updated information about developments in analytical methods such as chromatography, electrochemistry, optical sensor arrays for pharmaceutical and biomedical analysis. The fourth volume of the series features six reviews on a variety of techniques with three reviews focusing on applications in food science: Laser Ablation ICP-MS: New Instrumental Developments, Applications and Trends Voltammetric Electronic Tongues Recovery and Purification of Pharmaceuticals Using Nanomaterials Recent Advances in Determination of Pesticides Residues in Food Commodities derived from Fruit and Vegetable Crops. Recent Advances in Analytical Techniques for the Determination of Honey Content and its Products Liquid-based Coordination Polymers in Cashew Nut Shells: an overview on analytical techniques.




Ullmann's Polymers and Plastics, 4 Volume Set


Book Description

Your personal Ullmann's: Chemical and physical characteristics, production processes and production figures, main applications, toxicology and safety information are all to be found here in one single resource - bringing the vast knowledge of the Ullmann's Encyclopedia to the desks of industrial chemists and chemical engineers. The ULLMANN’S perspective on polymers and plastics brings reliable information on more than 1500 compounds and products straight to your desktop Carefully selected “best of” compilation of 61 topical articles from the Encyclopedia of Industrial Chemistry on economically important polymers provide a wealth of chemical, physical and economic data on more than 1000 different polymers and hundreds of modifications Contains a wealth of information on the production and use of all industrially relevant polymers and plastics, including organic and inorganic polymers, fibers, foams and resins Extensively updated: more than 30% of the content has been added or updated since the launch of the 7th edition of the Ullmann’s encyclopedia in 2011 and is now available in print for the first time 4 Volumes




Characterization and Analysis of Polymers


Book Description

Based on Wiley's renowned Encyclopedia of Polymer Science and Technology, this book provides coverage of key methods of characterization of the physical and chemical properties of polymers, including atomic force microscopy, chromatographic methods, laser light scattering, nuclear magnetic resonance, and thermal analysis, among others. Written by prominent scholars from around the world, this reference presents over twenty-five self -contained articles on the most used analytical techniques currently practiced in polymer science.







Modulated Temperature Differential Scanning Calorimetry


Book Description

MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the sample’s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure of the sample’s heat capacity from the modulation. The new information this provided sparked a revolution in scanning calorimetry by enabling new insights to be gained into almost all aspects of polymer characteristics. This book provides both a basic and advanced treatment of the theory of the technique followed by a detailed exposition of its application to reacting systems, blends and semicrystalline polymers by the leaders in all of these fields. It is an essential text for anybody interested in calorimetry or polymer characterization, especially if they have found that conventional DSC cannot help them with their problems.




Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Volume 4


Book Description

This book is mostly based on papers presented at the Fourth International Symposium on this topic held in Savannah, Georgia. However, in addition to these papers, certain very relevant papers have also been included to broaden the scope and thus enhance the value of this book.Currently there is tremendous interest in these material because of their