Polymer Degradation and Stabilisation


Book Description

The study of polymer degradation and stabilisation is of considerable practical importance as the industrial uses of polymeric materials continue to expand. In this book, the authors lucidly relate technological phenomena to the chemistry and physics of degradation and stabilisation processes. Degradation embraces a variety of technologically important phenomena ranging from relatively low temperature processes such as 'weathering' of plastics, 'fatigue' of rubbers through the processing of polymers in shearing mixers to very high temperature processes such as flammability and ablation. All these technological phenomena have in common certain basic chemical reactions. Thus 'weathering' has its roots in photo-oxidation, 'fatigue' and melt-degradation in mechano-oxidation and flammability, and ablation in ablation in pyrolysis and vapour phase oxidation.







Developments in Polymer Stabilisation—8


Book Description

The purpose of the present series of publications is two-fold. In the first place it is intended to review progress in the development of practical stabilising systems for a wide range of polymers and applications. A complementary and ultimately more important objec tive is to accommodate these practical developments within the framework of antioxidant theory, since there can be little question that further major advances in the practice of stabilisation technology will only be possible on the basis of a firm mechanistic foundation. Research into the role of 'stable' free radicals as antioxidants and stabilisers for polymers has intensified in recent years. Nitroxyl radicals (nitroxides) were the earliest long-lived radicals to be investi gated in detail and Maslov and Zaikov review the developments that have taken place in understanding their reaction mechanisms from the time when they were first investigated in liquid hydrocarbon systems to the present day when their outstanding performance as light stabilisers has been the object of much scientific research. Although some features of their reactivity remain obscure, the authors approach the problem kinetically and indicate the factors limiting their effectiveness.




Recycling of PVC and Mixed Plastic Waste


Book Description

This book, on recycling of PVC and mixed plastic wastes, has been compiled from contributions from an array of scientists from several countries who are playing a leading role in plastic recycling. They offer practical solutions to many difficult problems in this field. Anyone involved in production of materials from virgin polymers who is concerned with their recyclability should read this book. The ideas and data presented will help the process of planning future recycling efforts and help to bring the recycling process from a costly nuisance to a profitable industry.




Fundamentals of Polymer Degradation and Stabilization


Book Description

During the past decade, the field of polymer degradation and stabilization has become a subject of central importance in polymer science and technology. This book provides a fundamental source of information designed for those with only a basic understanding of the background of the field.




Developments in Polymer Degradation—7


Book Description

The purpose of this volume, like that of its predecessors in the series, is to present a selection of topics which are representative of the continually expanding area of polymer degradation. It will be obvious that some of these topics emanate from academic studies, others from more applied backgrounds, but it is anticipated that all will be seen to be of vital relevance to one or other of the currently advancing fields of polymer technology. The first two chapters deal with specific classes of polymers, and particularly with their mechanisms and products of thermal degrada tion. Thus in Chapter 1 Dr McNeill discusses the reactions of the ammonium, alkali and alkaline earth metal salts of poly(methacrylic acid) and their copolymers with methyl methacrylate. These water soluble 'ionomers' have valuable technological applications. In Chap ter 2 Professor Montaudo and Dr Puglisi perform a valuable service by drawing together and critically reviewing, for the first time to my knowledge, the mechanisms of thermal degradation of the various classes of condensation polymers which are of industrial significance. This includes, for example, the polyurethanes, polyureas, polyesters, polycarbonates, polyamides, polyimides, polyethers, polysulphides, polysulphones, polyschiff bases, polysiloxanes and polyphosphazenes.




Atmospheric Oxidation and Antioxidants


Book Description

This volume examines the oxidation chemistry of carbon-based materials in more detail with emphasis on the technological phenomena that result from the attack of oxygen and the practical procedures developed to prevent them.




Reactive Modifiers for Polymers


Book Description

Chemical modification of polymers by reactive modifiers is no longer an academic curiosity but a commercial reality that has delivered a diverse range of speciality materials for niche markets: reactively grafted styrenic alloys, maleated polyolefins, super-tough nylons, silane modified and moisture-cured polyolefins, and thermoplastic elastomers, are but few exam ples of commercial successes. Although the approach of reactive modification of polymers has been largely achieved either in solution or in the solid state (through in situ reactions in polymer melts), it is the latter route that has attracted most attention in the last two decades owing to its flexibility and cost-effective ness. This route, referred to as reactive processing, focuses on the use of suitable reactive modifier(s) and the adoption of conventional polymer processing machinery, an extruder or a mixer, as a chemical reactor, to perform in situ targeted reactions for chemical modification of preformed polymers. This relatively simple, though scientifically highly challenging, approach to reactive modification offers unique opportunities in exploiting various reactive modifiers for the purpose of altering and transforming in a controlled manner the properties of preformed commercial polymers into new/speciality materials with tailor-made properties and custom-designed performance for target applications. Such an economically attractive route constitutes a radical diversion away from the traditional practices of manufacturing new polymers from monomers which involves massive in vestments in sophisticated technologies and chemical plants.




Handbook of Polymer Science and Technology


Book Description

This handbook focuses on physical, structural, and compositional properties of elastomeric materials and plastics. It provides a broad overview of the physical and physicochemical properties of synthetic rubbers that are used in conventional cured applications.




Encyclopedia of Chemical Processing


Book Description

Supplying nearly 350 expertly-written articles on technologies that can maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques, this second edition provides gold standard articles on the methods, practices, products, and standards recently influencing the chemical industries. New material includes: design of key unit operations involved with chemical processes; design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; current industry practices; and pilot plant design and scale-up criteria.