Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice


Book Description

This book provides essential insights into recent developments in fundamental geotechnical engineering research. Special emphasis is given to a new family of constitutive soil description methods, which take into account the recent loading history and the dilatancy effects. Particular attention is also paid to the numerical implementation of multi-phase material under dynamic loads, and to geotechnical installation processes. In turn, the book addresses implementation problems concerning large deformations in soils during piling operations or densification processes, and discusses the limitations of the respective methods. Numerical simulations of dynamic consolidation processes are presented in slope stability analysis under seismic excitation. Lastly, achieving the energy transition from conventional to renewable sources will call for geotechnical expertise. Consequently, the book explores and analyzes a selection of interesting problems involving the stability and serviceability of supporting structures, and provides new solutions approaches for practitioners and scientists in geotechnical engineering. The content reflects the outcomes of the Colloquium on Geotechnical Engineering 2019 (Geotechnik Kolloquium), held in Karlsruhe, Germany in September 2019.




Geotechnical Engineering


Book Description

This book discusses contemporary issues related to soil mechanics and foundation engineering in earthworks, which are critical components in construction projects and often require detailed management techniques and unique solutions to address failures and implement remedial measures. The geotechnical engineering community continues to improve the classical testing techniques for measuring critical properties of soils and rocks, including stress wave-based non-destructive testing methods as well as methods used to improve shallow and deep foundation design. To minimize failure during construction, contemporary issues and related data may reveal useful lessons to improve project management and minimize economic losses. This book focuses on these aspects using appropriate methods in a rather simple manner. It also touches upon many interesting topics in soil mechanics and modern geotechnical engineering practice such as geotechnical earthquake engineering, principals in foundation design, slope stability analysis, modeling in geomechanics, offshore geotechnics, and geotechnical engineering perspective in the preservation of historical buildings and archeological sites. A total of seven chapters are included in the book.




Advanced Geotechnical Analyses


Book Description

The chapters in this book show that a careful blend of engineering judgement and advanced principles of engineering mechanics may be used to resolve many complex geotechnical engineering problems. It is hoped that these may inspire the geotechnical engineering practice to make more extensive use of them in future.




Soil Plasticity


Book Description

This book is addressed primarily to civil engineers familiar with such traditional topics as strength of materials, soil mechanics, and theory of elasticity and structures, but less familiar with the modern development of the mathematical theory of soil plasticity necessary to any engineer working under the general heading of nonlinear analysis of soil-structure system. This book will satisfy his needs in the case of the soil medium.It introduces the reader to the theory of soil plasticity and its numerical implementation into computer programs. The theory and method of computer implementation presented here are appropriate for solving nonlinear static dynamic problems in soil mechanics and are applicable for finite difference and finite element computer codes. A sample computer model subroutine is developed and this is used to study some typical soil mechanics problems.With its comprehensive coverage and simple, concise presentation, the book will undoubtedly prove to be very useful for consulting engineers, research and graduate students in geotechnical engineering.







Physical Soil Mechanics


Book Description

Soil is matter in its own right. Its nature can be captured by means of monotonous, cyclic and strange attractors. Thus material properties are defined by the asymptotic response of sand- and clay-like samples to imposed deformations and stresses. This serves to validate and calibrate elastoplastic and hypoplastic relations with comparative plots. Extensions capture thermal and seismic activations, limitations occur due to localizations and skeleton decay.Attractors in the large characterize boundary value problems from model tests via geotechnical operations up to tectonic evolutions. Validations of hypoplastic calculations are shown with many examples, possible further applications are indicated in detail. This approach is energetically justified and limited by critical points where the otherwise legitimate continuity gets lost by localization and decay. You will be fascinated by the fourth element although or just as it is so manifold.




Correlations of Soil and Rock Properties in Geotechnical Engineering


Book Description

This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.




Soil Cutting and Tillage


Book Description

After giving a brief history of tillage practices and implements used throughout the world dating back to ancient times, this book goes on to describe the basic soil mechanics techniques needed to calculate the forces developed in soil by simple-shaped cutting tools. The methods of measuring soil mechanical properties, water pressure in soil and shear rate effects are touched upon. A review is given of two and three dimensional soil cutting mathematical mechanics models to predict soil cutting forces and soil volumes disturbed by cutting and tillage tools, as well as the state-of-the-art of soil loosening, structural rearrangement and plant growth as affected by tillage tools. The author also includes an introduction to the analysis of traction machines. There are many numerical examples of mechanical analyses and predictions worked out in the various sections of the book as well as numerous unsolved problems at the end of a number of the chapters.Written in a textbook style, this monograph is ideal for anyone wanting to learn modern techniques for the mechanical description of soil cutting and tillage forces and soil volumes disturbed. It also provides a reference for analytical formulae and calculated force forces. It will be of interest to universities and colleges worldwide which have Agricultural Engineering Programs, Civil and Mechanical Engineering schools which specialize in soil mechanics and construction machinery as well as to research stations worldwide with interests in soil tillage, soil physics etc.




Developments in Geotechnical Engineering: from Harvard to New Delhi 1936-1994


Book Description

This book reviews the developments that have taken place in the field of geotechnical engineering since the first international conference on Soil Mechanics and Foundation Engineering was held in Harvard University in 1936 until the January 1994 conference in New Delhi, India.




Soil Mechanics


Book Description

A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-to-understand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers.