Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives


Book Description

Electrical machines and drives, and their associated power electronics, are a key part of an industrialized society. Reliability is a major challenge in systems design, operation, and maintenance of these technologies. Unreliable systems drive up costs, so diagnostics and fault tolerance become important to help maintain the system and estimate its operational lifetime.




Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives


Book Description

Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives An insightful treatment of present and emerging technologies in fault diagnosis and failure prognosis In Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives, a team of distinguished researchers delivers a comprehensive exploration of current and emerging approaches to fault diagnosis and failure prognosis of electrical machines and drives. The authors begin with foundational background, describing the physics of failure, the motor and drive designs and components that affect failure and signals, signal processing, and analysis. The book then moves on to describe the features of these signals and the methods commonly used to extract these features to diagnose the health of a motor or drive, as well as the methods used to identify the state of health and differentiate between possible faults or their severity. Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives discusses the tools used to recognize trends towards failure and the estimation of remaining useful life. It addresses the relationships between fault diagnosis, failure prognosis, and fault mitigation. The book also provides: A thorough introduction to the modes of failure, how early failure precursors manifest themselves in signals, and how features extracted from these signals are processed A comprehensive exploration of the fault diagnosis, the results of characterization, and how they used to predict the time of failure and the confidence interval associated with it A focus on medium-sized drives, including induction, permanent magnet AC, reluctance, and new machine and drive types Perfect for researchers and students who wish to study or practice in the rea of electrical machines and drives, Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives is also an indispensable resource for researchers with a background in signal processing or statistics.




Advanced Control of Electrical Drives and Power Electronic Converters


Book Description

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.




Safety-Critical Electrical Drives


Book Description

This book focuses on one of the most important aspects of electrical propulsion systems – the creation of highly reliable safety-critical traction electrical drives. It discusses the methods and models for analysis and optimization of reliability and fault tolerance indices, based on which, it proposes and assesses methods for improving the availability, fault tolerance and performance of traction electric drives.




Electrical Systems 1


Book Description

Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a system's lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.




Fault-Diagnosis Applications


Book Description

Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book “Fault-Diagnosis Systems” published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.




Electric Machines


Book Description

With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condition monitoring scheme—thus improving safety and reliability in electric motor operation. It also supplies a solid foundation in the fundamentals of fault cause and effect. Combines Theoretical Analysis and Practical Application Written by experts in electrical engineering, the book approaches the fault diagnosis of electrical motors through the process of theoretical analysis and practical application. It begins by explaining how to analyze the fundamentals of machine failure using the winding functions method, the magnetic equivalent circuit method, and finite element analysis. It then examines how to implement fault diagnosis using techniques such as the motor current signature analysis (MCSA) method, frequency domain method, model-based techniques, and a pattern recognition scheme. Emphasizing the MCSA implementation method, the authors discuss robust signal processing techniques and the implementation of reference-frame-theory-based fault diagnosis for hybrid vehicles. Fault Modeling, Diagnosis, and Implementation in One Volume Based on years of research and development at the Electrical Machines & Power Electronics (EMPE) Laboratory at Texas A&M University, this book describes practical analysis and implementation strategies that readers can use in their work. It brings together, in one volume, the fundamentals of motor fault conditions, advanced fault modeling theory, fault diagnosis techniques, and low-cost DSP-based fault diagnosis implementation strategies.




Proceedings of Third International Conference on Sustainable Expert Systems


Book Description

This book features high-quality research papers presented at the 3rd International Conference on Sustainable Expert Systems (ICSES 2022), held in Nepal during September 9–10, 2022. The book focuses on the research information related to artificial intelligence, sustainability and expert systems applied in almost all the areas of industries, government sectors and educational institutions worldwide. The main thrust of the book is to publish the conference papers that deal with the design, implementation, development, testing and management of intelligent and sustainable expert systems and also to provide both theoretical and practical guidelines for the deployment of these systems.




Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems


Book Description

This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book’s goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.




Emerging Electric Machines


Book Description

This book is an introduction to the concepts and developments of emerging electric machines, including advances, perspectives, and selected applications. It is a helpful tool for practicing engineers concerned with emerging electric machines and their challenges and potential uses. Chapters cover such topics as electric machines with axial magnetic flux, asynchronous machines with dual power supply, new designs for electrical machines, and more.