Diameter-Transformed Fluidized Bed


Book Description

This book puts forward the concept of the Diameter-Transformed Fluidized Bed (DTFB): a fluidized bed characterized by the coexistence of multiple flow regimes and reaction zones, achieved by transforming the bed into several sections of different diameters. It reviews fundamental aspects, including computational fluid dynamics simulations and industrial practices in connection with DTFB. In particular, it highlights an example concerning the development of maximizing iso-paraffins (MIP) reactors for regulating complex, fluid catalytic cracking reactions in petroleum refineries. The book is a must-have for understanding how academic and industrial researchers are now collaborating in order to develop novel catalytic processes.




Computational Fluid Dynamics and the Theory of Fluidization


Book Description

This book is for engineers and students to solve issues concerning the fluidized bed systems. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behavior which empirical data is limited or unavailable. The second objective is to provide a treatment of computational fluidization dynamics that is readily accessible to the non-specialist. The approach adopted in this book, starting with the formulation of predictive expressions for the basic conservation equations for mass and momentum using kinetic theory of granular flow. The analyses presented in this book represent a body of simulations and experiments research that has appeared in numerous publications over the last 20 years. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.




Transformation Products of Emerging Contaminants in the Environment


Book Description

Over the last 15 years, the focus of chemical pollution has shifted from conventional pollutants to so-called “emerging” or “new” unregulated contaminants. These include pharmaceuticals and personal care products, hormones, UV filters, perfluorinated compounds, poylybrominated flame retardants (BFRs), pesticides, plasticizers, artificial sweeteners, illicit drugs, and endocrine disruptor compounds (EDCs). Despite the increasing number of published studies covering emerging contaminants, we know almost nothing about the effects of their transformation products and/or metabolites. This two-volume set provides a unique collection of research on transformation products, their occurrence, fate and risks in the environment. It contains 32 chapters, organised into 7 parts, each with a distinct focus: • General Considerations • Transformation Processes and Treatment Strategies • Analytical Strategies • Occurrence, Fate and Effects in the Environment • Global Speciality and Environmental Status • Risk Assessment, Management and Regulatory Framework • Outlook Transformation Products of Emerging Contaminants in the Environment is a valuable resource for researchers and industry professionals in environmental chemistry, analytical chemistry, ecotoxicology, environmental sciences, and hydrology, as well as environmental consultants and regulatory bodies.




Fluidization


Book Description




Istc/cstic 2009 (cistc)


Book Description

ISTC/CSTIC is an annual semiconductor technology conference covering all the aspects of semiconductor technology and manufacturing, including devices, design, lithography, integration, materials, processes, manufacturing as well as emerging semiconductor technologies and silicon material applications. ISTC/CSTIC 2009 was merged by ISTC (International Semiconductor Technology Conference) and CSTIC (China Semiconductor Technology International Conference), the two industry leading technical conferences in China, and consisted of one plenary session and nine technical symposia. This issue of ECS Transactions contains 159 papers from the conference.




Technologies for Converting Biomass to Useful Energy


Book Description

Officially, the use of biomass for energy meets only 10-13% of the total global energy demand of 140 000 TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass was included. While the actual production of biomass is in the range of 270 000 TWh per year, most of this is not used for energy purposes, and mostly it is not used very efficiently. Therefore, there is a need for new methods for converting biomass into refined products like chemicals, fuels, wood and paper products, heat, cooling and electric power. Obviously, some biomass is also used as food – our primary life necessity. The different types of conversion methods covered in this volume are biogas production, bio-ethanol production, torrefaction, pyrolysis, high temperature gasifi cation and combustion. This book covers the suitability of different methods for conversion of different types of biomass. Different versions of the conversion methods are presented – both existing methods and those being developed for the future. System optimization using modeling methods and simulation are analyzed to determine advantages and disadvantages of different solutions. Many international experts have contributed to provide an up-to-date view of the situation all over the world. These global perspectives and the inclusion of so much expertise of distinguished international researchers and professionals make this book unique. This book will prove useful and inspiring to professionals, engineers, researchers and students as well as to those working for different authorities and organizations.







Proceedings of the 20th International Conference on Fluidized Bed Combustion


Book Description

The proceedings of the 20th International Conference on Fluidized Bed Combustion (FBC) collect 9 plenary lectures and 175 peer-reviewed technical papers presented in the conference held in Xi'an China in May 18-21,2009. The conference was the 20th conference in a series, covering the latest fundamental research results, as well as the application experience from pilot plants, demonstrations and industrial units regarding to the FBC science and technology. It was co-hosted by Tsinghua University, Southeast University, Zhejiang University, China Electricity Council and Chinese Machinery Industry Federation. A particular feature of the proceedings is the balance between the papers submitted by experts from industry and the papers submitted by academic researchers, aiming to bring academic knowledge to application as well as to define new areas for research. The authors of the proceedings are the most active researchers, technology developers, experienced and representative facility operators and manufacturers. They presented the latest research results, state-of-the-art development and projects, and the useful experience. The proceedings are divided into following sections: • CFB Boiler Technology, Operation and Design • Fundamental Research on Fluidization and Fluidized Combustion • C02 Capture and Chemical Looping • Gasification • Modeling and Simulation on FBC Technology • Environments and Pollutant Control • Sustainable Fuels The proceedings can be served as idea references for researchers, engineers, academia and graduate students, plant operators, boiler manufacturers, component suppliers, and technical managers who work on FBC fundamental research, technology development and industrial application.




Fossil Energy Update


Book Description




32nd European Symposium on Computer Aided Process Engineering


Book Description

32nd European Symposium on Computer Aided Process Engineering: ESCAPE-32 contains the papers presented at the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Toulouse, France. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students and consultants for chemical industries who work in process development and design. - Presents findings and discussions from the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event