Dielectric Properties of Ionic Liquids


Book Description

This book discusses the mechanisms of electric conductivity in various ionic liquid systems (protic, aprotic as well as polymerized ionic liquids). It hence covers the electric properties of ionic liquids and their macromolecular counterpanes, some of the most promising materials for the development of safe electrolytes in modern electrochemical energy devices such as batteries, super-capacitors, fuel cells and dye-sensitized solar cells. Chapter contributions by the experts in the field discuss important findings obtained using broadband dielectric spectroscopy (BDS) and other complementary techniques. The book is an excellent introduction for readers who are new to the field of dielectric properties of ionic conductors, and a helpful guide for every scientist who wants to investigate the interplay between molecular structure and dynamics in ionic conductors by means of dielectric spectroscopy.




Polymerized Ionic Liquids


Book Description

The series covers the fundamentals and applications of different smart material systems from renowned international experts.




Solvents, Ionic Liquids and Solvent Effects


Book Description

Solvents and ionic liquids are ubiquitous within our whole life since ancient times and their effects are actually being studied through basic sciences like Chemistry, Physics and Biology as well as being researched by a large number of scientific disciplines.This book represents an attempt to present examples on the utility of old and new solvents and the effects they exercise on several fields of academic and industrial interest. The first section, Solvents, presents information on bio-solvents and their synthesis, industrial production and applications, about per and trichloroethylene air monitoring in dry cleaners in the city of Sfax (Tunsia) and on the synthesis of polyimides using molten benzoic acid as the solvent. The second section, Ionic Liquids, shows information about the synthesis, physicochemical characterization and exploration of antimicrobial activities of imidazolium ionic liquid-supported Schiff base and its transition metal complexes, the technology of heterogenization of transition metal catalysts towards the synthetic applications in an ionic liquid matrix, the progress in ionic liquids as reaction media, monomers, and additives in high-performance polymers, a pre-screening of ionic liquids as gas hydrate inhibitor via application of COSMO-RS for methane hydrate, the extraction of aromatic compounds from their mixtures with alkanes from ternary to quaternary (or higher) systems and a review on ionic liquids as environmental benign solvent for cellulose chemistry. The final section, Solvent Effects, displays interesting information on solvent effects on dye sensitizers derived from anthocyanidins for applications in photocatalysis, about the solvent effect on a model of SNAr reaction in conventional and non-conventional solvents, and on solvent effects in supramolecular systems.




The Scaling of Relaxation Processes


Book Description

The dielectric properties especially of glassy materials are nowadays explored at widely varying temperatures and pressures without any gap in the spectral range from μHz up to the Infrared, thus covering typically 20 decades or more. This extraordinary span enables to trace the scaling and the mutual interactions of relaxation processes in detail, e.g. the dynamic glass transition and secondary relaxations, but as well far infrared vibrations, like the Boson peak. Additionally the evolution of intra-molecular interactions in the course of the dynamic glass transition is also well explored by (Fourier Transform) Infrared Spectroscopy. This volume within 'Advances in Dielectrics' summarizes this knowledge and discusses it with respect to the existing and often competing theoretical concepts.




Aqueous Dielectrics


Book Description




Ionic Liquids II


Book Description

​The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters “Ionic Liquid–Liquid Chromatography: A New General Purpose Separation Methodology”, “Proteins in Ionic Liquids: Current Status of Experiments and Simulations”, “Lewis Acidic Ionic Liquids” and "Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Ionic Liquids


Book Description

Ionic liquids, including the newer subcategory of deep eutectic solvents, continue to attract a great deal of research attention in an even increasing number of areas, including traditional areas such as synthesis (organic and materials), electrochemistry, and physical property studies and predictions, as well as less obvious areas such as lubrication and enzymatic transformations. In this volume, recent advances in a number of these different areas are reported and reviewed, thus granting some appreciation for the future that ionic liquid research holds and affording inspiration for those who have not previously considered the application of ionic liquids in their area of interest.




Spectroscopy


Book Description

Provides students and practitioners with a comprehensive understanding of the theory of spectroscopy and the design and use of spectrophotometers In this book, you will learn the fundamental principles underpinning molecular spectroscopy and the connections between those principles and the design of spectrophotometers. Spectroscopy, along with chromatography, mass spectrometry, and electrochemistry, is an important and widely-used analytical technique. Applications of spectroscopy include air quality monitoring, compound identification, and the analysis of paintings and culturally important artifacts. This book introduces students to the fundamentals of molecular spectroscopy – including UV-visible, infrared, fluorescence, and Raman spectroscopy – in an approachable and comprehensive way. It goes beyond the basics of the subject and provides a detailed look at the interplay between theory and practice, making it ideal for courses in quantitative analysis, instrumental analysis, and biochemistry, as well as courses focused solely on spectroscopy. It is also a valuable resource for practitioners working in laboratories who regularly perform spectroscopic analyses. Spectroscopy: Principles and Instrumentation: Provides extensive coverage of principles, instrumentation, and applications of molecular spectroscopy Facilitates a modular approach to teaching and learning about chemical instrumentation Helps students visualize the effects that electromagnetic radiation in different regions of the spectrum has on matter Connects the fundamental theory of the effects of electromagnetic radiation on matter to the design and use of spectrophotometers Features numerous figures and diagrams to facilitate learning Includes several worked examples and companion exercises throughout each chapter so that readers can check their understanding Offers numerous problems at the end of each chapter to allow readers to apply what they have learned Includes case studies that illustrate how spectroscopy is used in practice, including analyzing works of art, studying the kinetics of enzymatic reactions, detecting explosives, and determining the DNA sequence of the human genome Complements Chromatography: Principles and Instrumentation The book is divided into five chapters that cover the Fundamentals of Spectroscopy, UV-visible Spectroscopy, Fluorescence/Luminescence Spectroscopy, Infrared Spectroscopy, and Raman Spectroscopy. Each chapter details the theory upon which the specific techniques are based, provides ways for readers to visualize the molecular-level effects of electromagnetic radiation on matter, describes the design and components of spectrophotometers, discusses applications of each type of spectroscopy, and includes case studies that illustrate specific applications of spectroscopy. Each chapter is divided into multiple sections using headings and subheadings, making it easy for readers to work through the book and to find specific information relevant to their interests. Numerous figures, exercises, worked examples, and end-of-chapter problems reinforce important concepts and facilitate learning. Spectroscopy: Principles and Instrumentation is an excellent text that prepares undergraduate students and practitioners to operate in modern laboratories.




Nanotechnology-Based Industrial Applications of Ionic Liquids


Book Description

Numerous solvents used in chemical processes have poisonous and unsafe properties that pose significant ecological concerns ranging from atmospheric emissions to the contamination of water effluents. To combat these ecological threats, over the course of the past two decades, the field of green chemistry has grown to develop more natural reaction processes and techniques involving the use of nonconventional solvents to diminish waste solvent production and thus decrease negative impact on the environment. Ionic liquids in particular are more environmentally friendly substitutes to conventional solvents, and as such, have seen more widespread use in the past decade. They have been used in such processes as extraction, separation, purification of organic, inorganic, and bioinorganic compounds, reaction media in biochemical and chemical catalysis, green organic and drug synthesis, among other industrial applications. Thus, in proving themselves a suitable greener media for economic viability in chemical processes, ionic liquids are leading to more sustainable development. This edition explores the application of ionic liquids as a green solvent. It contains a state-of-the-art overview on ionic liquids as green solvents for chemical processes and techniques, as well as some of their useful industrial applications.




Fundamentals of Ionic Liquids


Book Description

Written by experts who have been part of this field since its beginnings in both research and academia, this textbook introduces readers to this evolving topic and the broad range of applications that are being explored. The book begins by examining what it is that defines ionic liquids and what sets them apart from other materials. Chapters describe the various types of ionic liquids and the different techniques used to synthesize them, as well as their properties and some of the methods used in their measurement. Further chapters delve into synthetic and electrochemical applications and their broad use as "Green" solvents. Final chapters examine important applications in a wide variety of contexts, including such devices as solar cells and batteries, electrochemistry, and biotechnology. The result is a must-have resource for any researcher beginning to work in this growing field, including senior undergraduates and postgraduates.