Difference Algebra


Book Description

Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.




Algebra: Chapter 0


Book Description

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.




Geometric Algebra


Book Description

This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.




Algebraic Structures and Operators Calculus


Book Description

Introduction I. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III. Lie algebras: some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. Holomorphic canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 III. Canonical Appell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II. Dual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. Induced representations and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General Appell systems Chapter 3 I. Convolution and stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II. Stochastic processes on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III. Appell systems on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 II. Induced representation and coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 III. Orthogonal polynomials in several variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 II. Finite-difference algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 III. q-HW algebra and basic hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IV. su2 and Krawtchouk polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 V. e2 and Lommel polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 II. Type-H Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Vll III. Upper-triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 IV. Affine and Euclidean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 7 Hermitian symmetric spaces I. Basic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 II. Space of rectangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 III. Space of skew-symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 IV. Space of symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Chapter 8 Properties of matrix elements I. Addition formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 II. Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 III. Quotient representations and summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Chapter 9 Symbolic computations I. Computing the pi-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Adjoint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 III. Recursive computation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Handbook of Algebra


Book Description

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes




Same But Different Math


Book Description

Same But Different Math is a powerful routine to help students improve their mathematical reasoning, clarify concepts and make critical connections between ideas. Popular math consultant Sue Looney takes you step by step through implementation so you can easily add this routine into your toolbox. She establishes the rationale for the routine and then walks you through specific examples of when to use it, how to use it and how to make specific connections for learners. Throughout the book, you’ll find examples of lessons with images from a range of grade levels and mathematical content to show you the routine in action. There are also exercises for you to complete while reading to help you apply what you’ve learned, as well as a handy planning section with a template and resource links. In addition, there are Appendices featuring additional examples, which you can download from our website www.routledge.com/9781032126555 for classroom use. With the helpful features in this book, you’ll come away confidently able to implement this routine, bringing all your students to deeper levels of understanding in math.




The Algebra of Happiness


Book Description

An unconventional book of wisdom and life advice from renowned business school professor and New York Times bestselling author of The Four Scott Galloway. Scott Galloway teaches brand strategy at NYU's Stern School of Business, but his most popular lectures deal with life strategy, not business. In the classroom, on his blog, and in YouTube videos garnering millions of views, he regularly offers hard-hitting answers to the big questions: What's the formula for a life well lived? How can you have a meaningful career, not just a lucrative one? Is work/life balance possible? What are the elements of a successful relationship? The Algebra of Happiness: Notes on the Pursuit of Success, Love, and Meaning draws on Professor Galloway's mix of anecdotes and no-BS insight to share hard-won wisdom about life's challenges, along with poignant personal stories. Whether it's advice on if you should drop out of school to be an entrepreneur (it might have worked for Steve Jobs, but you're probably not Steve Jobs), ideas on how to position yourself in a crowded job market (do something "boring" and move to a city; passion is for people who are already rich), discovering what the most important decision in your life is (it's not your job, your car, OR your zip code), or arguing that our relationships to others are ultimately all that matter, Galloway entertains, inspires, and provokes. Brash, funny, and surprisingly moving, The Algebra of Happiness represents a refreshing perspective on our need for both professional success and personal fulfillment, and makes the perfect gift for any new graduate, or for anyone who feels adrift.







Library of Congress Subject Headings


Book Description




Library of Congress Subject Headings


Book Description