Mathematical Physics with Partial Differential Equations


Book Description

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.




Partial Differential Equations of Mathematical Physics


Book Description

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.




Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics


Book Description

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. Presents the universal transmutation method as the most powerful for solving many problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods Combines mathematical rigor with an illuminating exposition full of historical notes and fascinating details Enables researchers, lecturers and students to find material under the single "roof"




Kernel Functions and Elliptic Differential Equations in Mathematical Physics


Book Description

This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.




Partial Differential Equations of Mathematical Physics


Book Description

A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.




Partial Differential Equations in Classical Mathematical Physics


Book Description

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.




Introduction to Partial Differential Equations with Applications


Book Description

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.




Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial


Book Description

This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in ordinary and partial differential equations, fluid dynamics, and various applications.




Differential Equations on Manifolds and Mathematical Physics


Book Description

This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.




Ordinary Differential Equations and Applications


Book Description

This introductory text presents ordinary differential equations with a modern approach to mathematical modelling in a one semester module of 20–25 lectures. - Presents ordinary differential equations with a modern approach to mathematical modelling - Discusses linear differential equations of second order, miscellaneous solution techniques, oscillatory motion and laplace transform, among other topics - Includes self-study projects and extended tutorial solutions