Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial


Book Description

This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in ordinary and partial differential equations, fluid dynamics, and various applications.




Differential Equations, Mathematical Physics, and Applications


Book Description

This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph. D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former S.




Functional Analysis and Geometry: Selim Grigorievich Krein Centennial


Book Description

This is the first of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 734. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in functional analysis, operator theory, several complex variables, topological dynamics, and algebraic, convex, and integral geometry.




Liouville-Riemann-Roch Theorems on Abelian Coverings


Book Description

This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.




From Complex Analysis to Operator Theory: A Panorama


Book Description

This volume is dedicated to the memory of Sergey Naboko (1950-2020). In addition to original research contributions covering the vast areas of interest of Sergey Naboko, it includes personal reminiscences and comments on the works and legacy of Sergey Naboko’s scientific achievements. Areas from complex analysis to operator theory, especially, spectral theory, are covered, and the papers will inspire current and future researchers in these areas.




Introduction to Radon Transforms


Book Description

A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.




Mathematical Reviews


Book Description




Voronezh Winter Mathematical Schools


Book Description

The Voronezh Winter Mathematical School was an annual event in the scientific life of the former Soviet Union for 25 years. Articles collected here are written by prominent mathematicians and former lecturers and participants of the school, covering a range of subjects in analysis and geometry. Specific topics include global analysis, harmonic analysis, function theory, dynamical systems, operator theory, mathematical physics, spectral theory, homogenization, algebraic geometry, differential geometry, and geometric analysis. For researchers and graduate students in analysis, geometry, and mathematical physics. No index. Annotation copyrighted by Book News, Inc., Portland, OR




Operator Algebras, Toeplitz Operators and Related Topics


Book Description

This book features a collection of up-to-date research papers that study various aspects of general operator algebra theory and concrete classes of operators, including a range of applications. Most of the papers included were presented at the International Workshop on Operator Algebras, Toeplitz Operators, and Related Topics, in Boca del Rio, Veracruz, Mexico, in November 2018. The conference, which was attended by more than 30 leading experts in the field, was held in celebration of Nikolai Vasilevski’s 70th birthday, and the contributions are dedicated to him.




Waves in Periodic and Random Media


Book Description

Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.