Differential Games


Book Description

Graduate-level text surveys games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, games with restricted phase coordinates, and N-person games. 1971 edition.




LQ Dynamic Optimization and Differential Games


Book Description

Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.




Differential Games in Economics and Management Science


Book Description

A comprehensive, self-contained survey of the theory and applications of differential games, one of the most commonly used tools for modelling and analysing economics and management problems which are characterised by both multiperiod and strategic decision making. Although no prior knowledge of game theory is required, a basic knowledge of linear algebra, ordinary differential equations, mathematical programming and probability theory is necessary. Part One presents the theory of differential games, starting with the basic concepts of game theory and going on to cover control theoretic models, Markovian equilibria with simultaneous play, differential games with hierarchical play, trigger strategy equilibria, differential games with special structures, and stochastic differential games. Part Two offers applications to capital accumulation games, industrial organization and oligopoly games, marketing, resources and environmental economics.




Differential Games


Book Description

Definitive work draws on game theory, calculus of variations, and control theory to solve an array of problems: military, pursuit and evasion, athletic contests, many more. Detailed examples, formal calculations. 1965 edition.




Applied Differential Games


Book Description

This book grew out of a set of lecture notes for a one semester course on dynamic game theory held at the University of Technology, Vienna. It is intended primarily at the graduate level for students in operations research, management science, applied mathematics, and eco nomics. I hope that I have been able to give the reader an accessible introduction to the subject of nonzero-sum dif ferential games with particular emphasis on applications. It would be irrational to try to re ach total com prehensiveness in a single volume. Therefore, I have resisted the temptation to "over-cannibalize" previous textbooks and monographs on the subject. It has rather been my desire to cover material that (I think) is impor tant and interesting, but gets left out of these publications. Writing a book is quite a game. In the beginning -before c10sing the binding agreement* with Plenum-I believed this to be a fi·nite horizon game. Time, however, * Key words will be explained in the text. 7 PREFACE 8 was a merciless arbiter. I am grateful to the Senior Editor, Dr. Ken Derharn, for allowing manuscript delivery to become a (restricted) free terminal time problem. Most of all, I thank my wife Grace for offering me the needed spiritual support, and my two-year-old daughter Sabrina for ignoring the paradoxical situation that there are games which prevent Dad from playing with her.




Cooperative Stochastic Differential Games


Book Description

Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.




Dynamic Optimization and Differential Games


Book Description

This book has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide by those whose work involves the theoretical aspects of dynamic optimization and differential games.




Stochastic and Differential Games


Book Description

The theory of two-person, zero-sum differential games started at the be­ ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton­ Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe­ sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv­ ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po­ sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.




Differential Games and Applications


Book Description

This volume contains fifteen articles on the topic of differential and dynamic games, focusing on both theory and applications. It covers a variety of areas and presents recent developments on topics of current interest. It should be useful to researchers in differential and dynamic games, systems and control, operations research and mathematical economics.




Stability, Control and Differential Games


Book Description

This book presents the proceedings of the International Conference “Stability, Control, Differential Games” (SCDG2019, September 16 – 20, 2019, Yekaterinburg, Russia), organized by the Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. Discussing the latest advances in the theory of optimal control, stability theory and differential games, it also demonstrates the application of new techniques and numerical algorithms to solve problems in robotics, mechatronics, power and energy systems, economics and ecology. Further, the book includes fundamental results in control theory, stability theory and differential games presented at the conference, as well as a number of chapters focusing on novel approaches in solving important applied problems in control and optimization. Lastly, it evaluates recent major accomplishments, and forecasts developments in various up-and-coming areas, such as hybrid systems, model predictive control, Hamilton–Jacobi equations and advanced estimation algorithms.