Diffractive Optics for Thin-Film Silicon Solar Cells


Book Description

This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses.




Silicon Based Thin Film Solar Cells


Book Description

Silicon Based Thin Film Solar Cells explains concepts related to technologies for silicon (Si) based photovoltaic applications. Topics in this book focus on ‘new concept’ solar cells. These kinds of cells can make photovoltaic power production an economically viable option in comparison to the bulk crystalline semiconductor technology industry. A transition from bulk crystalline Si solar cells toward thin-film technologies reduces usage of active material and introduces new concepts based on nanotechnologies. Despite its importance, the scientific development and understanding of new solar cells is not very advanced, and educational resources for specialized engineers and scientists are required. This textbook presents the fundamental scientific aspects of Si thin films growth technology, together with a clear understanding of the properties of the material and how this is employed in new generation photovoltaic solar cells. The textbook is a valuable resource for graduate students working on their theses, young researchers and all people approaching problems and fundamental aspects of advanced photovoltaic conversion.







Design and Fabrication of Photonic Crystals and Diffraction Gratings for Ultra Thin Film Si Solar Cells


Book Description

Gratings are considered. The goal is to integrate such structures into ultra-thin film silicon photovoltaic solar cells, with a view to improve their conversion efficiency. First, a PCs assisted ultra-thin film crystalline silicon (c-Si) solar cell is designed optimized by using the Finite Different Time Domain (FDTD) approach. An increase over50% is achieved for the absorption, as integrated over the whole spectral range, by patterning a 2D PCs in the active Si layer. This enhancement is achieved by combining Slow Bloch modes and Fabry-Perot modes. In order to fabricate such solar cells, we developed a process based on Laser Holographic Lithography, Reactive Ion Etching and Inductivity Coupled Plasma etching. We have investigated the influence of the parameters taking part in these processes on the obtained patterns. Finally the optical and electrical properties of the devices have been characterized by our co-workers at IMEC, Belgium. Absorption measurements are in good agreement with the theoretical simulations. Moreover, the integrated absorption is tolerant with regard to the sunlight angle of incidence. The final fabricated 2D PCs patterned solar cell exhibits a 20% higher short circuit current (Jsc = 15mA/cm2) than the reference. Additionally, a more complex thin film c-Si solar cells integrating front and back diffraction gratings has been designed. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. A short-circuit current increase up to 30 mA/cm2 is predicted for this device, far above the 18 mA/cm2 value for the unpatterned reference These are first steps towards the development of a future generation of PC and diffraction grating assisted solar cells.




Thin Films Photovoltaics


Book Description

Thin film photovoltaic-based solar modules produce power at a low cost per watt. They are ideal candidates for large-scale solar farms as well as building-integrated photovoltaic applications. They can generate consistent power, not only at elevated temperatures but also on cloudy, overcast days and at low sun angles.Thin film photovoltaics are second-generation solar cells produced by depositing one or more thin layers, or thin films, of photosensitive material on a suitable substrate such as glass, polymer, or metal. Thin film solar cells are based on various materials such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin film silicon (a-Si, TF-Si) are commercially used in several conventional and advanced technologies.




Solar Energy


Book Description

Gathering some 30 entries from the Encyclopedia of Sustainability Science and Technology, this book presents fundamental principles and technologies for sustainably harnessing solar energy. Covers photovoltaics, solar thermal energy, solar radiation and more.




Advanced Characterization Techniques for Thin Film Solar Cells


Book Description

The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.




Nanotechnology for Photovoltaics


Book Description

Current concerns regarding greenhouse gas-related environmental effects, energy security, and the rising costs of fossil fuel-based energy has renewed interest in solar energy in general and photovotaics in particular. Exploring state-of-the-art developments from a practical point of view, Nanotechnology for Photovoltaics examines issues in increas




Photon Management in Solar Cells


Book Description

Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, applied and surface physicists.




Optical Modeling and Simulation of Thin-Film Photovoltaic Devices


Book Description

In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices.