Modeling Solar Radiation at the Earth's Surface


Book Description

Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.




Modeling Solar Radiation at the Earth's Surface


Book Description

Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.




Diffuse Solar Radiation Modeling


Book Description

This book introduces an updated review of the studies and researches carried out about the modeling approaches and techniques for calculating the diffuse solar radiation. The author has taken care to classify, justify and test the presented models. The final product of this book is to form a reasonableimagination about the future work of the field, since it is very important in many applications needed in our life such as solar energy utilization, weather forecast and pollution problems. It can be also considered as a state-of-the-art in this field through suggesting the future work adopted to continue to reach better values that could be used in developing the life of the humans in this world.




Solar Radiation


Book Description

Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation measurements. It also examines the accuracy of solar radiation modeling and measurements. The majority of the book describes the most popular simple models for estimating broadband and spectral solar resources available to flat plate, concentrating, photovoltaic, solar thermal, and daylighting engineering designs. Sufficient detail is provided for readers to implement the models in assorted development environments. Covering the nuts and bolts of practical solar radiation modeling applications, this book helps readers translate solar radiation data into viable, real-world renewable energy applications. It answers many how-to questions relating to solar energy conversion systems, solar daylighting, energy efficiency of buildings, and other solar radiation applications.







An Introduction To Solar Radiation


Book Description

An Introduction to Solar Radiation is an introductory text on solar radiation, with emphasis on the methods of calculation for determining the amount of solar radiation incident on a surface on the earth. Topics covered include the astronomical relationship between the sun and the earth; thermal radiation; the solar constant and its spectral distribution; and extraterrestrial solar irradiation. This book is comprised of 12 chapters and begins with an overview of the trigonometric relationships between the sun-earth line and the position of an inclined surface, followed by a discussion on the characteristics of blackbody radiation. The next chapter focuses on the solar constant and its spectral distribution, paying particular attention to extraterrestrial solar spectral irradiance and the sun's blackbody temperature. Subsequent chapters explore extraterrestrial and radiation incident on inclined planes; the optics of a cloudless-sky atmosphere; solar spectral radiation and total (broadband) radiation under cloudless skies; and solar radiation arriving at horizontal surfaces on the earth through cloudy skies. The ground albedo and its spectral and angular variation are also described, along with insolation on inclined surfaces. The last chapter is devoted to instruments for measuring solar radiation, including pyrheliometers and pyranometers. This monograph will serve as a useful guide for energy analysts, designers of thermal devices, architects and engineers, agronomists, and hydrologists as well as senior graduate students.




Solar Radiation and Daylight Models


Book Description

The cost of operating a building far exceeds the cost of constructing it, and yet until recently little attention was paid to the impact of solar radiation on the costs of heating, cooling and ventilation. And now that there has been a surge in interest in energy efficiency and solar design, architects and designers need a practical guide to the modelling and application of solar energy data. There are many different models and techniques available for calculating the distribution of solar radiation on and in buildings, and these algorithms vary considerably in scope, accuracy and complexity. This book demonstrates which of these predictive tools gives the best results in different circumstances, including explaining which models can be best used in different parts of the world. The author has had over twenty-five years of experience of dealing with solar energy data from four continents and has used that experience in this book to show the development not just of knowledge but also the growing sophistication of the models available to apply it.




Solar Radiation, Modelling and Remote Sensing


Book Description

Accurate solar radiation knowledge and its characterization on the Earth’s surface are of high interest in many aspects of environmental and engineering sciences. Modeling of solar irradiance from satellite imagery has become the most widely used method for retrieving solar irradiance information under total sky conditions, particularly in the solar energy community. Solar radiation modeling, forecasting, and characterization continue to be broad areas of study, research, and development in the scientific community. This Special Issue contains a small sample of the current activities in this field. Both the environmental and climatology community, as the solar energy world, share a great interest in improving modeling tools and capabilities for obtaining more reliable and accurate knowledge of solar irradiance components worldwide. The work presented in this Special Issue also remarks on the significant role that remote sensing technologies play in retrieving and forecasting solar radiation information.




Solar and Infrared Radiation Measurements


Book Description

The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operation, and maintenance Data quality assessment Methods to use measured data to estimate irradiance for any surface With a broad range of content that will benefit students and more experienced readers alike, this resource serves as a primer and technical reference that presents the basic terminology and fundamentals for resource assessment. It explores the history of solar radiation instruments and addresses direct normal, global, diffuse, and tilted measurements, as well as the characteristics of instruments used for these measurements. The authors consider methods of assessing the uncertainty of solar measurements and then cover albedo, infrared, net, and spectral irradiance measurements and instrumentation. The book devotes a section to other meteorological instruments, and another to the basics for installing and operating a solar monitoring station. Appendices include information on solar resource assessment modeling and satellite-derived irradiance, along with other useful material. This book’s authors are experts who each have more than 30 years of experience developing and operating multiple measurement stations, working with industry to improve radiometry, and conducting various research projects.