Diffusion and Electrophoretic NMR


Book Description

Diffusion and Eletrophoretic NMR experiments resolve chemical compounds based on their molecular motion. This publication introduces the basics of these methods and explains how they can be used to measure the size of molecules and aggregates, to determine degree of polymerization and to solve other chemical problems. Supplied with many case studies, the book is a must-have for students and researchers who work with practical NMR measurements.




Diffusion and Electrophoretic NMR


Book Description

Diffusion and Eletrophoretic NMR experiments resolve chemical compounds based on their molecular motion. This publication introduces the basics of these methods and explains how they can be used to measure the size of molecules and aggregates, to determine degree of polymerization and to solve other chemical problems. Supplied with many case studies, the book is a must-have for students and researchers who work with practical NMR measurements.




Two-Dimensional (2D) NMR Methods


Book Description

TWO-DIMENSIONAL (2D) NMR METHODS Practical guide explaining the fundamentals of 2D-NMR for experienced scientists as well as relevant for advanced students Two-Dimensional (2D) NMR Methods is a focused work presenting an overview of 2D-NMR concepts and techniques, including basic principles, practical applications, and how NMR pulse sequences work. Contributed to by global experts with extensive experience in the field, Two-Dimensional (2D) NMR Methods provides in-depth coverage of sample topics such as: Basics of 2D-NMR, data processing methods (Fourier and beyond), product operator formalism, basics of spin relaxation, and coherence transfer pathways Multidimensional methods (single- and multiple-quantum spectroscopy), NOESY (principles and applications), and DOSY methods Multiple acquisition strategies, anisotropic NMR in molecular analysis, ultrafast 2D methods, and multidimensional methods in bio-NMR TROSY (principles and applications), field-cycling and 2D NMR, multidimensional methods and paramagnetic NMR, and relaxation dispersion experiments This text is a highly useful resource for NMR specialists and advanced students studying NMR, along with users in research, academic and commercial laboratories that study or conduct experiments in NMR.




NMR Studies of Translational Motion


Book Description

Translational motion in solution, either diffusion or fluid flow, is at the heart of chemical and biochemical reactivity. Nuclear Magnetic Resonance (NMR) provides a powerful non-invasive technique for studying the phenomena using magnetic field gradient methods. Describing the physical basis of measurement techniques, with particular emphasis on diffusion, balancing theory with experimental observations and assuming little mathematical knowledge, this is a strong, yet accessible, introduction to the field. A detailed discussion of magnetic field gradient methods applied to Magnetic Resonance Imaging (MRI) is included, alongside extensive referencing throughout, providing a timely, definitive book to the subject, ideal for researchers in the fields of physics, chemistry and biology.




Nuclear Magnetic Resonance


Book Description

As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth, both as a technique and in its applications. Today's applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules, which is covered in two reports: NMR of Proteins and Nucleic Acids and NMR of Carbohydrates, Lipids and Membranes. In his foreword to the first volume, the then editor, Professor Robin Harris announced that the series would be a discussion on the phenomena of NMR and that articles will be critical surveys of the literature. This has certainly remained the case throughout the series, and in line with its predecessors, Volume 40 aims to provide a comprehensive coverage of the relevant NMR literature. For the current volume this relates to publications appearing between June 2009 and May 2010 (the nominal period of coverage in volume 1 was July 1970 to June 1971). Compared to the previous volume there are some new members of the reporting team. Theoretical Aspects of Spin-Spin Couplings are covered by J. Jazwinski, while E. Swiezewska and J.W3⁄4jcik provide an account of NMR of Carbohydrates, Lipids and Membranes.




Encyclopedia of Electrochemical Power Sources


Book Description

The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike




Nano-Surface Chemistry


Book Description

Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supramolecular architecture, nanoconfinement and compartmentalization, measurement and control of interfacial forces, novel synthetic materials, and computer simulation. The authors reviews surface forces apparatus measurements of two-dimensional organized ensembles at solid-liquid interfaces.




Diffusion in Condensed Matter


Book Description

This comprehensive, handbook-style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. It is understood and presented as a phenomenon of crucial relevance for a large variety of processes and materials. In this book, all aspects of the theoretical fundamentals, experimental techniques, highlights of current developments and results for solids, liquids and interfaces are presented.




Electrolytes, Interfaces and Interphases


Book Description

The authoritative textbook for those who want to enter the field of electrochemical energy storage research.




Modern NMR Techniques for Synthetic Chemistry


Book Description

A blend of theory and practical advice, Modern NMR Techniques for Synthetic Chemistry illustrates how NMR spectroscopy can be used to determine the abundance, size, shape, and function of organic molecules. It provides you with a description the NMR technique used (more pictorial than mathematical), indicating the most common pulse sequences, some practical information as appropriate, followed by illustrative examples. This format is followed for each chapter so you can skip the more theoretical details if the practical aspects are what interest you. Following a discussion of basic parameters, the book describes the utility of NMR in detecting and quantifying dynamic processes, with particular emphasis on the usefulness of saturation-transfer (STD) techniques. It details pulsed–field gradient approaches to diffusion measurement, diffusion models, and approaches to ‘inorganic’ nuclei detection, important as many synthetic pathways to new organics involve heavier elements. The text concludes with coverage of applications of NMR to the analysis of complex mixtures, natural products, carbohydrates, and nucleic acids—all areas of activity for researchers working at the chemistry-life sciences interface. The book’s unique format provides some theoretical insight into the NMR technique used, indicating the most common pulse sequences. The book draws upon several NMR methods that are resurging or currently hot in the field and indicates the specific pulse sequence used by various spectrometer manufacturers for each technique. It examines the analysis of complex mixtures, a feature not found in most books on this topic.