Diffusion in Ordered Alloys


Book Description

There has been a large amount of work on the mechanical properties, phases, and microstructures of aluminides and ordered alloys, but little work has been undertaken on diffusion. Topics covered include fundamentals of atom movements in ordered alloys and mediated ordering kinetics and diffusion.




Diffusion in Solids


Book Description

This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.




Handbook of Solid State Diffusion: Volume 1


Book Description

Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques covers the basic fundamentals, techniques, applications, and latest developments in the area of solid-state diffusion, offering a pedagogical understanding for students, academicians, and development engineers. Both experimental techniques and computational methods find equal importance in the first of this two-volume set. Volume 1 covers the fundamentals and techniques of solid-state diffusion, beginning with a comprehensive discussion of defects, then different analyzing methods, and finally concluding with an exploration of the different types of modeling techniques. - Presents a handbook with a short mathematical background and detailed examples of concrete applications of the sophisticated methods of analysis - Enables readers to learn the basic concepts of experimental approaches and the computational methods involved in solid-state diffusion - Covers bulk, thin film, and nanomaterials - Introduces the problems and analysis in important materials systems in various applications - Collates contributions from academic and industrial problems from leading scientists involved in developing key concepts across the globe




Ordered Intermetallics


Book Description

Ordered intermetallics constitute a unique class of metallic materials which may be developed as new-generation materials for structural use at high temperatures in hostile environments. At present, there is a worldwide interest in intermetallics, and extensive efforts have been devoted to intermetallic research and development in the U.S., Japan, European countries, and other nations. As a result, significant advances have been made in all areas of intermetallic research. This NATO Advanced Workshop on ordered intermetallics (1) reviews the recent progress, and (2) assesses the future direction of intermetallic research in the areas of electronic structure and phase stability, deformation and fracture, and high-temperature properties. The book is divided into six parts: (1) Electronic Structure and Phase Stability; (2) Deformation and Dislocation Structures; (3) Ductility and Fracture; (4) Kinetic Processes and Creep Behavior; (5) Research Programs and Highlights; and (6) Assessment of Current Research and Recommendation for Future Work. The first four parts review the recent advances in the three focus areas. The fifth part provides highlights of the intermetallic research under major programs and in different institutes and countries. The last part provides a forum for the discussion of research areas for future studies.




The ‘Ordering-Phase Separation’ Transition in Alloys


Book Description

The discovery of the transition “ordering-phase separation”, which occurs in alloys when the sign of the chemical interaction between neighboring atoms A and B changes with temperature, has shown that a whole direction in science, namely Materials Science, has not fully moved on from the ideas of the previous century. The theories about the nature of alloys which have been implanted in us as students have turned out not to be correct enough to explain the processes present in alloys under thermal influence. In fact, these processes are determined only by the chemical interaction between nearest atoms A and B. Therefore, this book is the first publication to present exhaustive experimental and theoretical evidence proving the validity of this thesis for alloys. This radically changes our outlook on the nature of alloys, and makes it possible to rationalize the technology of heat treatment of alloys, compelling us to address the correction of existing phase diagrams and to use a conscious approach to the design of new alloys instead of the empirical one.




Diffusion in the Iron Group L12 and B2 Intermetallic Compounds


Book Description

This book explores diffusion in L12 and B2 structures of Ni3Al, Ni3Ge, Ni3Ga and NiAl, NiGe and NiGa and discusses Fe- and Co-based alloys in detail. These alloys of the VIIIA group elements are the basis of intermetallic compounds known as "super alloys," which are important in many technological high-temperature structural applications to improve mechanical strength properties such as creep. Knowledge of diffusion behavior of intermetallic solids is critical, in particular in high temperature applications of material. Development of high temperature alloys depends on the understanding of diffusion in the aforementioned compounds. Therefore, this comprehensive book on diffusion in the iron group (VIIIA) based intermetallic compounds will be of interest to students, lecturers and researchers. For engineers working in the aircraft industry, this book will prove invaluable as it contains fundamental up to date information and basic knowledge on materials of their interest.




Order-Disorder Transformations in Alloys


Book Description

This book contains 18 invited contributions to the first Inter national Symposium on Order-Disorder Transformations in Alloys+. They cover the major aspects of this group of phase transformations. Although structural order-disorder transformations have been investigated for over 50 years the invited papers, the research papers - whose titles and authors are listed in the appendix - and the discussions at the Symposium have demonstrated very active continued interest and con siderable recent progress in the subject. This is true for theoretical work as weIl as for experimental studies and for the development of materials whose properties result from order-disorder transformations. + Some major national conferences on ordering were held in the USA and in the USSR in recent years; the proceedings are available in the following pUblications: Local Atomic Arrangements Studied by X-Ray Diffraction, Gordon & Breach, New York 1966 2 Ordered Alloys, Claitor's Publ. Div. , Baton Rouge, La. 1970 3 Summaries of the Proceedings of the 2nd Union Conference on Atomic Ordering and its Influence on the Properties of Alloys, Naukova Dumka, Kiev 1966 4 Atomic Ordering and its Influence on the Properties of Alloys, Naukova Dumka, Kiev 1968 5 Atomic Ordering and its Influence on the Properties of Alloys, TGU, Tomsk 1973 111 In assembling these papers it vas attempted to compile a systematic and approximately complete compendium of the sUbject.




Diffusion in Solids


Book Description

This book offers detailed descriptions of the methods available to predict the occurrence of diffusion in alloys subjected to various processes. Major topic areas covered include diffusion equations, atomic theory of diffusion, diffusion in dilute alloys, diffusion in a concentration gradient, diffusion in non-metals, high diffusivity paths, and thermo- and electro-transport.




Physical Metallurgy


Book Description

This is the fourth edition of a work which first appeared in 1965. The first edition had approximately one thousand pages in a single volume. This latest volume has almost three thousand pages in 3 volumes which is a fair measure of the pace at which the discipline of physical metallurgy has grown in the intervening 30 years.Almost all the topics previously treated are still in evidence in this version which is approximately 50% bigger than the previous edition. All the chapters have been either totally rewritten by new authors or thoroughly revised and expanded, either by the third-edition authors alone or jointly with new co-authors. Three chapters on new topics have been added, dealing with dry corrosion, oxidation and protection of metal surfaces; the dislocation theory of the mechanical behavior of intermetallic compounds; and (most novel) a chapter on polymer science for metallurgists, which analyses the conceptual mismatch between metallurgists' and polymer scientists' way of looking at materials. Special care has been taken throughout all chapters to incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included in this edition. There is a very detailed subject index, as well as a comprehensive author index.The original version of this book has long been regarded as the standard text in physical metallurgy and this thoroughly rewritten and updated version will retain this status.




Diffusion in Crystalline Solids


Book Description

Diffusion in Crystalline Solids addresses some of the most active areas of research on diffusion in crystalline solids. Topics covered include measurement of tracer diffusion coefficients in solids, diffusion in silicon and germanium, atom transport in oxides of the fluorite structure, tracer diffusion in concentrated alloys, diffusion in dislocations, grain boundary diffusion mechanisms in metals, and the use of the Monte Carlo Method to simulate diffusion kinetics. This book is made up of eight chapters and begins with an introduction to the measurement of diffusion coefficients with radioisotopes. The following three chapters consider diffusion in materials of substantial technological importance such as silicon and germanium. Atomic transport in oxides of the fluorite structure is described, and diffusion in concentrated alloys, including intermetallic compounds, is analyzed. The next two chapters delve into diffusion along short-circuiting paths, focusing on the effect of diffusion down dislocations on the form of the tracer concentration profile. The book also discusses the mechanisms of diffusion in grain boundaries in metals by invoking considerable work done on grain-boundary structure. The last two chapters are concerned with computer simulation, paying particular attention to machine calculations and the Monte Carlo method. The book concludes by exploring the fundamental atomic migration process and presenting some state-of-the-art calculations for defect energies and the topology of the saddle surface. Students and researchers of material science will find this book extremely useful.