Diffusion Processes and Related Topics in Biology


Book Description

These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol ogy and neurobiology literature. While the subject may be classical, the nov elty here lies in the approach and point of view, particularly in the applica tions such as the approach to the neuronal firing problem and its related dif fusion approximations. It is a pleasure to thank Professors Richard C. Lewontin and Arnold J.F. Siegert for their interest and support, and Mrs. Angell Pasley for her excellent and careful typing. I . PRELIMINARIES 1. Terminology and Examples Consider an experiment specified by: a) the experiment's outcomes, ~, forming the space S; b) certain subsets of S (called events) and by the probabilities of these events.







Stochastic Processes in Cell Biology


Book Description

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.




Computer Aided Systems Theory – EUROCAST 2005


Book Description

This book constitutes the thoroughly refereed post-proceedings of the 10th International Conference on Computer Aided Systems Theory, EUROCAST 2005, held in Las Palmas de Gran Canaria, Spain in February 2005. The 83 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on formal approaches in modelling, intelligent information systems, information applications components, cryptography and spectral analysis, computer vision, biocomputing, intelligent vehicular systems, robotic soccer, robotics and control.




Lindenmayer Systems, Fractals, and Plants


Book Description

1-systems are a mathematical formalism which was proposed by Aristid 1indenmayer in 1968 as a foundation for an axiomatic theory of develop ment. The notion promptly attracted the attention of computer scientists, who investigated 1-systems from the viewpoint of formal language theory. This theoretical line of research was pursued very actively in the seventies, resulting in over one thousand publications. A different research direction was taken in 1984 by Alvy Ray Smith, who proposed 1-systems as a tool for synthesizing realistic images of plants and pointed out the relationship between 1-systems and the concept of fractals introduced by Benoit Mandel brot. The work by Smith inspired our studies of the application of 1-systems to computer graphics. Originally, we were interested in two problems: • Can 1-systems be used as a realistic model of plant species found in nature? • Can 1-systems be applied to generate images of a wide class of fractals? It turned out that both questions had affirmative answers. Subsequently we found that 1-systems could be applied to other areas, such as the generation of tilings, reproduction of a geometric art form from East India, and synthesis of musical scores based on an interpretation of fractals. This book collects our results related to the graphical applications of- systems. It is a corrected version of the notes which we prepared for the ACM SIGGRAPH '88 course on fractals.







Mathematical Ecology


Book Description




Stochastic Methods in Neuroscience


Book Description

Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area.Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameterestimation; and the numerical approximation of these stochastic models.Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.




Mathematical Topics in Population Biology, Morphogenesis and Neurosciences


Book Description

This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecology and Population Biology, 2) Mathematical Theory of Developmental Biology and Morphogenesis, 3) Theoretical Neurosciences, and 4) Cell Kinetics and Other Topics. In every session, there were stimulating and active discussions among the participants. We are convinced that the symposium was highly successful in transmitting scientific information across disciplines and in establishing fruitful contacts among the participants. We owe this success to the cooperation of all participants.




Modelling of Patterns in Space and Time


Book Description

This volume contains a selection of papers presented at the work shop "Modelling of Patterns in Space and Time", organized by the 80nderforschungsbereich 123, "8tochastische Mathematische Modelle", in Heidelberg, July 4-8, 1983. The main aim of this workshop was to bring together physicists, chemists, biologists and mathematicians for an exchange of ideas and results in modelling patterns. Since the mathe matical problems arising depend only partially on the particular field of applications the interdisciplinary cooperation proved very useful. The workshop mainly treated phenomena showing spatial structures. The special areas covered were morphogenesis, growth in cell cultures, competition systems, structured populations, chemotaxis, chemical precipitation, space-time oscillations in chemical reactors, patterns in flames and fluids and mathematical methods. The discussions between experimentalists and theoreticians were especially interesting and effective. The editors hope that these proceedings reflect at least partially the atmosphere of this workshop. For the convenience of the reader, the papers are ordered alpha betically according to authors. However, the table of contents can easily be grouped into the main topics of the workshop. For practical reasons it was not possible to reproduce in colour the beautiful pictures of patterns shown at the workshop. Since a larger number of half-tone pictures could be included in this volume, the loss of information has, however, been kept to a minimum. The workshop has already stimulated cooperation between its parti cipants and this volume is intended to spread this effect.