Digital Communication for Practicing Engineers


Book Description

Offers concise, practical knowledge on modern communication systems to help students transition smoothly into the workplace and beyond This book presents the most relevant concepts and technologies of today's communication systems and presents them in a concise and intuitive manner. It covers advanced topics such as Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) Technology, which are enabling technologies for modern communication systems such as WiFi (including the latest enhancements) and LTE-Advanced. Following a brief introduction to the field, Digital Communication for Practicing Engineers immerses readers in the theories and technologies that engineers deal with. It starts off with Shannon Theorem and Information Theory, before moving on to basic modules of a communication system, including modulation, statistical detection, channel coding, synchronization, and equalization. The next part of the book discusses advanced topics such as OFDM and MIMO, and introduces several emerging technologies in the context of 5G cellular system radio interface. The book closes by outlining several current research areas in digital communications. In addition, this text: Breaks down the subject into self-contained lectures, which can be read individually or as a whole Focuses on the pros and cons of widely used techniques, while providing references for detailed mathematical analysis Follows the current technology trends, including advanced topics such as OFDM and MIMO Touches on content this is not usually contained in textbooks such as cyclo-stationary symbol timing recovery, adaptive self-interference canceler, and Tomlinson-Harashima precoder Includes many illustrations, homework problems, and examples Digital Communication for Practicing Engineers is an ideal guide for graduate students and professionals in digital communication looking to understand, work with, and adapt to the current and future technology.




Digital Communication for Practicing Engineers


Book Description

Offers concise, practical knowledge on modern communication systems to help students transition smoothly into the workplace and beyond This book presents the most relevant concepts and technologies of today's communication systems and presents them in a concise and intuitive manner. It covers advanced topics such as Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) Technology, which are enabling technologies for modern communication systems such as WiFi (including the latest enhancements) and LTE-Advanced. Following a brief introduction to the field, Digital Communication for Practicing Engineers immerses readers in the theories and technologies that engineers deal with. It starts off with Shannon Theorem and Information Theory, before moving on to basic modules of a communication system, including modulation, statistical detection, channel coding, synchronization, and equalization. The next part of the book discusses advanced topics such as OFDM and MIMO, and introduces several emerging technologies in the context of 5G cellular system radio interface. The book closes by outlining several current research areas in digital communications. In addition, this text: Breaks down the subject into self-contained lectures, which can be read individually or as a whole Focuses on the pros and cons of widely used techniques, while providing references for detailed mathematical analysis Follows the current technology trends, including advanced topics such as OFDM and MIMO Touches on content this is not usually contained in textbooks such as cyclo-stationary symbol timing recovery, adaptive self-interference canceler, and Tomlinson-Harashima precoder Includes many illustrations, homework problems, and examples Digital Communication for Practicing Engineers is an ideal guide for graduate students and professionals in digital communication looking to understand, work with, and adapt to the current and future technology.







Principles of Digital Communication


Book Description

The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study.




Digital Microwave Communication


Book Description

The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all engineering aspects of microwave communications in the digital age. This important new work provides readers with the depth of knowledge necessary for all the system engineering details associated with fixed point-to-point microwave radio path design: the why, what, and how of microwave transmission; design objectives; engineering methodologies; and design philosophy (in the bid, design, and acceptance phase of the project). Written in an easily accessible format, Digital Microwave Communication features an appendix of specialized engineering details and formulas, and offers up chapter coverage of: A Brief History of Microwave Radio Microwave Radio Overview System Components Hypothetical Reference Circuits Multipath Fading Rain Fading Reflections and Obstructions Network Reliability Calculations Regulation of Microwave Radio Networks Radio Network Performance Objectives Designing and Operating Microwave Systems Antennas Radio Diversity Ducting and Obstruction Fading Digital Receiver Interference Path Performance Calculations Digital Microwave Communication: Engineering Point-to-Point Microwave Systems will be of great interest to engineers and managers who specify, design, or evaluate fixed point-to-point microwave systems associated with communications systems and equipment manufacturers, independent and university research organizations, government agencies, telecommunications services, and other users.




Synchronization in Digital Communication Systems


Book Description

This practical guide helps readers to learn how to develop and implement synchronization functions in digital communication systems.




Digital Communication


Book Description

This supplement contains worked out solutions to the chapter end problem sets found in Digital Communication, Second Edition, ISBN 0-7923-9391-0.




Fundamentals of Wireless Communication


Book Description

This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.




Introduction to Wireless Digital Communication


Book Description

The Accessible Guide to Modern Wireless Communication for Undergraduates, Graduates, and Practicing Electrical Engineers Wireless communication is a critical discipline of electrical engineering and computer science, yet the concepts have remained elusive for students who are not specialists in the area. This text makes digital communication and receiver algorithms for wireless communication broadly accessible to undergraduates, graduates, and practicing electrical engineers. Notably, the book builds on a signal processing foundation and does not require prior courses on analog or digital communication. Introduction to Wireless Digital Communication establishes the principles of communication, from a digital signal processing perspective, including key mathematical background, transmitter and receiver signal processing algorithms, channel models, and generalizations to multiple antennas. Robert Heath’s “less is more” approach focuses on typical solutions to common problems in wireless engineering. Heath presents digital communication fundamentals from a signal processing perspective, focusing on the complex pulse amplitude modulation approach used in most commercial wireless systems. He describes specific receiver algorithms for implementing wireless communication links, including synchronization, carrier frequency offset estimation, channel estimation, and equalization. While most concepts are presented for systems with single transmit and receive antennas, Heath concludes by extending those concepts to contemporary MIMO systems. To promote learning, each chapter includes previews, bullet-point summaries, examples, and numerous homework problems to help readers test their knowledge. Basics of wireless communication: applications, history, and the central role of signal processing Digital communication essentials: components, channels, distortion, coding/decoding, encryption, and modulation/demodulation Signal processing: linear time invariant systems, probability/random processes, Fourier transforms, derivation of complex baseband signal representation and equivalent channels, and multi-rate signal processing Least-squared estimation techniques that build on the linear algebra typically taught to electrical engineering undergraduates Complex pulse amplitude modulation: symbol mapping, constellations, signal bandwidth, and noise Synchronization, including symbol, frame, and carrier frequency offset Frequency selective channel estimation and equalization MIMO techniques using multiple transmit and/or receive antennas, including SIMO, MISO, and MIMO-OFDM Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.




Chaos-Based Digital Communication Systems


Book Description

One of the first books in this area, this text focuses on important aspects of the system operation, analysis and performance evaluation of selected chaos-based digital communications systems – a hot topic in communications and signal processing.