First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018


Book Description

Digital fabrication has been termed the “third industrial revolution”, and is promising to revolutionize many disciplines, including most recently the construction sector. Both academia and industry see immense promise in cementitious materials, which lend themselves well to additive manufacturing techniques for digital fabrication in construction. With this recent trend and high interest in this new research field, the 1st RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete 2018) was organized. Since 2014, ETH Zurich has been host for the Swiss National Centre for Competence in Research (NCCR) for Digital Fabrication in Architecture, which is highly interdisciplinary and unique worldwide. In 2018, this NCCR opened the “DFAB House”, which incorporates many digital fabrication principles for architecture. It is also responsible for the 600 m2 Robotic Fabrication Lab and the first robotically built roof in the world. Held in tandem with Rob|Arch 2018, the leading conference for robotics in architecture, RILEM deemed it the right time to combine forces at this new conference, which will be the first large conference to feature the work of the recently created RILEM Technical Committee on Digital Fabrication with Cement-based Materials, among other leaders in this new field worldwide. This conference proceedings brings together papers that take into account the findings in this new area. Papers reflect the varying themes of the conference, including Materials, Processing, Structure, and Applications.




Second RILEM International Conference on Concrete and Digital Fabrication


Book Description

This book gathers peer-reviewed contributions presented at the 2nd RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete), held online and hosted by the Eindhoven University of Technology, the Netherlands from 6-9 July 2020. Focusing on additive and automated manufacturing technologies for the fabrication of cementitious construction materials, such as 3D concrete printing, powder bed printing, and shotcrete 3D printing, the papers highlight the latest findings in this fast-growing field, addressing topics like mixture design, admixtures, rheology and fresh-state behavior, alternative materials, microstructure, cold joints & interfaces, mechanical performance, reinforcement, structural engineering, durability and sustainability, automation and industrialization.




Third RILEM International Conference on Concrete and Digital Fabrication


Book Description

This book gathers peer-reviewed contributions presented at the 3rd RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete), held in Loughborough, UK, on June 27-29, 2022. Focusing on additive and automated manufacturing technologies for the fabrication of cementitious construction materials, such as 3D concrete printing, powder bed printing, and shotcrete 3D printing, the papers highlight the latest findings in this fast-growing field, addressing topics like mixture design, admixtures, rheology and fresh-state behavior, alternative materials, microstructure, cold joints & interfaces, mechanical performance, reinforcement, structural engineering, durability and sustainability, automation and industrialization.







Rheology and Processing of Construction Materials


Book Description

This book gathers the peer-reviewed contributions presented at two parallel, closely interconnected events on advanced construction materials and processes, namely the 2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9), held in Dresden, Germany on 8-11 September 2019. The papers discuss various aspects of research on the development, testing, and applications of cement-based and other building materials together with their specific rheological properties. Furthermore, the papers cover the latest findings in the fast-growing field of self-compacting concrete, addressing topics including components’ properties and characterization; chemical admixtures, effect of binders (incl. geopolymers, calcined clay, etc.) and mixture design; laboratory and in-situ rheological testing; constitutive models and flow modelling; numerical simulations; mixing, processing and casting processes; and additive manufacturing / 3D-printing. Also presenting case studies, the book is of interest to researchers, graduate students, and industry specialists, such as material suppliers, consultants and construction experts.




Digital Fabrication with Cement-Based Materials


Book Description

This book presents the work of the RILEM Technical Committee 276-DFC: Digital fabrication with cement-based materials. The most important outcomes of the technical committee are presented. First, a unified process classification for digital fabrication with concrete is proposed, discussed and illustrated. Then, a state of the art of the testing methods (both at a material and structural level and in the fresh and hardened state) is provided. The gathered knowledge is expected to form the foundation of some quality control procedures for fresh properties along with hardened properties and service life performance. The book will benefit academics, practitioners, industry and standardization committees interested in digital fabrication with cement-based materials.




3D Concrete Printing Technology


Book Description

3D Concrete Printing Technology provides valuable insights into the new manufacturing techniques and technologies needed to produce concrete materials. In this book, the editors explain the concrete printing process for mix design and the fresh properties for the high-performance printing of concrete, along with commentary regarding their extrudability, workability and buildability. This is followed by a discussion of three large-scale 3D printings of ultra-high performance concretes, including their processing setup, computational design, printing process and materials characterization. Properties of 3D-printed fiber-reinforced Portland cement paste and its flexural and compressive strength, density and porosity and the 3D-printing of hierarchical materials is also covered. - Explores the factors influencing the mechanical properties of 3D printed products out of magnesium potassium phosphate cement material - Includes methods for developing Concrete Polymer Building Components for 3D Printing - Provides methods for formulating geopolymers for 3D printing for construction applications




Additive Manufacturing for Construction


Book Description

Additive Manufacturing for Construction reveals additive manufacturing technologies for building and construction applications. The book explores on-site and off-site construction techniques, featuring design strategies which will eliminate production difficulties and minimise assembly costs, from both academic and industrial perspectives.




Construction 4.0


Book Description

Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a confluence of trends and technologies that promise to reshape the way built environment assets are designed, constructed, and operated. With the pervasive use of Building Information Modelling (BIM), lean principles, digital technologies, and offsite construction, the industry is at the cusp of this transformation. The critical challenge is the fragmented state of teaching, research, and professional practice in the built environment sector. This handbook aims to overcome this fragmentation by describing Construction 4.0 in the context of its current state, emerging trends and technologies, and the people and process issues that surround the coming transformation. Construction 4.0 is a framework that is a confluence and convergence of the following broad themes discussed in this book: Industrial production (prefabrication, 3D printing and assembly, offsite manufacture) Cyber-physical systems (actuators, sensors, IoT, robots, cobots, drones) Digital and computing technologies (BIM, video and laser scanning, AI and cloud computing, big data and data analytics, reality capture, Blockchain, simulation, augmented reality, data standards and interoperability, and vertical and horizontal integration) The aim of this handbook is to describe the Construction 4.0 framework and consequently highlight the resultant processes and practices that allow us to plan, design, deliver, and operate built environment assets more effectively and efficiently by focusing on the physical-to-digital transformation and then digital-to-physical transformation. This book is essential reading for all built environment and AEC stakeholders who need to get to grips with the technological transformations currently shaping their industry, research, and teaching.




Fabricate 2020


Book Description

Fabricate 2020 is the fourth title in the FABRICATE series on the theme of digital fabrication and published in conjunction with a triennial conference (London, April 2020). The book features cutting-edge built projects and work-in-progress from both academia and practice. It brings together pioneers in design and making from across the fields of architecture, construction, engineering, manufacturing, materials technology and computation. Fabricate 2020 includes 32 illustrated articles punctuated by four conversations between world-leading experts from design to engineering, discussing themes such as drawing-to-production, behavioural composites, robotic assembly, and digital craft.