Digital Image Processing for Medical Applications


Book Description

Hands-on text for a first course aimed at end-users, focusing on concepts, practical issues and problem solving.




Medical Image Processing


Book Description

The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.




Digital Image Processing


Book Description

Learn about state-of-the-art digital image processing without the complicated math and programming… You don’t have to be a preeminent computer scientist or engineer to get the most out of today’s digital image processing technology. Whether you’re working in medical imaging, machine vision, graphic arts, or just a hobbyist working at home, this book will get you up and running in no time, with all the technical know-how you need to perform sophisticated image processing operations. Designed for end users, as well as an introduction for system designers, developers, and technical managers, this book doesn’t bog you down in complex mathematical formulas or lines of programming code. Instead, in clear down-to-earth language supplemented with numerous example images and the ready-to-run digital image processing program on the enclosed disk, it schools you, step-by-step, in essential digital image processing concepts, principles, techniques, and technologies. Disk contains sample image files and a ready-to-run digital image processing program that lets you do as you learn detailed step-by-step guides to the most commonly used operations, including references to real-world applications and implementations hundreds of before and after images that help illustrate all the operations described comprehensive coverage of current hardware and the best methods for acquiring, displaying, and processing digital images




Optical and Digital Image Processing


Book Description

In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. This book covers the fundamental basis of the optical and image processing techniques by integrating contributions from both optical and digital research communities to solve current application bottlenecks, and give rise to new applications and solutions. Besides focusing on joint research, it also aims at disseminating the knowledge existing in both domains. Applications covered include image restoration, medical imaging, surveillance, holography, etc... "a very good book that deserves to be on the bookshelf of a serious student or scientist working in these areas." Source: Optics and Photonics News




Signal and Image Processing in Medical Applications


Book Description

This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.




Digital Image Processing


Book Description

Written as an introduction for undergraduate students, this textbook covers the most important methods in digital image processing. Formal and mathematical aspects are discussed at a fundamental level and various practical examples and exercises supplement the text. The book uses the image processing environment ImageJ, freely distributed by the National Institute of Health. A comprehensive website supports the book, and contains full source code for all examples in the book, a question and answer forum, slides for instructors, etc. Digital Image Processing in Java is the definitive textbook for computer science students studying image processing and digital processing.




Digital Image Processing Algorithms and Applications


Book Description

A unique collection of algorithms and lab experiments for practitioners and researchers of digital image processing technology With the field of digital image processing rapidly expanding, there is a growing need for a book that would go beyond theory and techniques to address the underlying algorithms. Digital Image Processing Algorithms and Applications fills the gap in the field, providing scientists and engineers with a complete library of algorithms for digital image processing, coding, and analysis. Digital image transform algorithms, edge detection algorithms, and image segmentation algorithms are carefully gleaned from the literature for compatibility and a track record of acceptance in the scientific community. The author guides readers through all facets of the technology, supplementing the discussion with detailed lab exercises in EIKONA, his own digital image processing software, as well as useful PDF transparencies. He covers in depth filtering and enhancement, transforms, compression, edge detection, region segmentation, and shape analysis, explaining at every step the relevant theory, algorithm structure, and its use for problem solving in various applications. The availability of the lab exercises and the source code (all algorithms are presented in C-code) over the Internet makes the book an invaluable self-study guide. It also lets interested readers develop digital image processing applications on ordinary desktop computers as well as on Unix machines.




Principles of Digital Image Processing


Book Description

This textbook is the third of three volumes which provide a modern, algorithmic introduction to digital image processing, designed to be used both by learners desiring a firm foundation on which to build, and practitioners in search of critical analysis and concrete implementations of the most important techniques. This volume builds upon the introductory material presented in the first two volumes with additional key concepts and methods in image processing. Features: practical examples and carefully constructed chapter-ending exercises; real implementations, concise mathematical notation, and precise algorithmic descriptions designed for programmers and practitioners; easily adaptable Java code and completely worked-out examples for easy inclusion in existing applications; uses ImageJ; provides a supplementary website with the complete Java source code, test images, and corrections; additional presentation tools for instructors including a complete set of figures, tables, and mathematical elements.




MEDICAL IMAGE PROCESSING


Book Description

Medical Image Processing: Concepts and Applications presents an overview of image processing for various applications in the field of medical science. Inclusion of several topics like noise reduction filters, feature extraction, image restoration, segmentation, soft computing techniques and context-based medical image retrieval, etc. makes this book a single-source information meeting the requirements of the readers. Besides, the coverage of digital image processing, human visual perception and CAD system to be used in automated diagnosis system, medical imaging modalities, various application areas of medical field, detection and classification of various disease, etc. is highly emphasised in the book. The book, divided into eight chapters, presents the topics in a clear, simple, practical and cogent fashion that provides the students with the insight into theory as well as applications to the practical problems. The research orientation of the book greatly supports the concepts of image processing to be applied for segmentation, classification and detection of affected areas in X-ray, MRI and mammographic and all other medical images. Throughout the book, an attempt has been made to address the challenges faced by radiologists, physicians and doctors in scanning, interpretation and diagnosis process. The book uses an abundance of colour images to impart a high level of comprehension of concepts and helps in mastering the process of medical image processing. Special attention is made on the review of algorithms or methods of medical image formation, processing and analysis, medical imaging applications, and emerging medical imaging modality. This is purely a text dedicated for the undergraduate and postgraduate students of biomedical engineering. The book is also of immense use to the students of computer science engineering and IT who offer a course on digital image processing. Key Points • Chapter-end review questions test the students’ knowledge of the funda-mental concepts. • Course outcomes help the students in capturing the key points. • Several images and information regarding morphological operations given in appendices help in getting additional knowledge in the field of medical image processing.




Computer Imaging


Book Description

Computer Imaging: Digital Image Analysis and Processing brings together analysis and processing in a unified framework, providing a valuable foundation for understanding both computer vision and image processing applications. Taking an engineering approach, the text integrates theory with a conceptual and application-oriented style, allowing you to immediately understand how each topic fits into the overall structure of practical application development. Divided into five major parts, the book begins by introducing the concepts and definitions necessary to understand computer imaging. The second part describes image analysis and provides the tools, concepts, and models required to analyze digital images and develop computer vision applications. Part III discusses application areas for the processing of images, emphasizing human visual perception. Part IV delivers the information required to apply a CVIPtools environment to algorithm development. The text concludes with appendices that provide supplemental imaging information and assist with the programming exercises found in each chapter. The author presents topics as needed for understanding each practical imaging model being studied. This motivates the reader to master the topics and also makes the book useful as a reference. The CVIPtools software integrated throughout the book, now in a new Windows version, provides practical examples and encourages you to conduct additional exploration via tutorials and programming exercises provided with each chapter.