Digital Logic Testing and Simulation


Book Description

Your road map for meeting today's digital testing challenges Today, digital logic devices are common in products that impact public safety, including applications in transportation and human implants. Accurate testing has become more critical to reliability, safety, and the bottom line. Yet, as digital systems become more ubiquitous and complex, the challenge of testing them has become more difficult. As one development group designing a RISC stated, "the work required to . . . test a chip of this size approached the amount of effort required to design it." A valued reference for nearly two decades, Digital Logic Testing and Simulation has been significantly revised and updated for designers and test engineers who must meet this challenge. There is no single solution to the testing problem. Organized in an easy-to-follow, sequential format, this Second Edition familiarizes the reader with the many different strategies for testing and their applications, and assesses the strengths and weaknesses of the various approaches. The book reviews the building blocks of a successful testing strategy and guides the reader on choosing the best solution for a particular application. Digital Logic Testing and Simulation, Second Edition covers such key topics as: * Binary Decision Diagrams (BDDs) and cycle-based simulation * Tester architectures/Standard Test Interface Language (STIL) * Practical algorithms written in a Hardware Design Language (HDL) * Fault tolerance * Behavioral Automatic Test Pattern Generation (ATPG) * The development of the Test Design Expert (TDX), the many obstacles encountered and lessons learned in creating this novel testing approach Up-to-date and comprehensive, Digital Logic Testing and Simulation is an important resource for anyone charged with pinpointing faulty products and assuring quality, safety, and profitability.




Digital Logic Testing and Simulation


Book Description

The new standard in the field, presenting the latest design and testing methods for logic circuits, and the development of a BASIC-based simulation. Offers designers and test engineers unique coverage of circuit design for testability, stressing the incorporation of hardware into designs that facilitate testing and diagnosis by allowing greater access to internal circuits. Examines various ways of representing a design, as well as external testing methods that apply this information.




Digital Logic Design


Book Description

New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules




Digital Systems Testing and Testable Design


Book Description

This updated printing of the leading text and reference in digital systems testing and testable design provides comprehensive, state-of-the-art coverage of the field. Included are extensive discussions of test generation, fault modeling for classic and new technologies, simulation, fault simulation, design for testability, built-in self-test, and diagnosis. Complete with numerous problems, this book is a must-have for test engineers, ASIC and system designers, and CAD developers, and advanced engineering students will find this book an invaluable tool to keep current with recent changes in the field.




An Introduction to Logic Circuit Testing


Book Description

An Introduction to Logic Circuit Testing provides a detailed coverage of techniques for test generation and testable design of digital electronic circuits/systems. The material covered in the book should be sufficient for a course, or part of a course, in digital circuit testing for senior-level undergraduate and first-year graduate students in Electrical Engineering and Computer Science. The book will also be a valuable resource for engineers working in the industry. This book has four chapters. Chapter 1 deals with various types of faults that may occur in very large scale integration (VLSI)-based digital circuits. Chapter 2 introduces the major concepts of all test generation techniques such as redundancy, fault coverage, sensitization, and backtracking. Chapter 3 introduces the key concepts of testability, followed by some ad hoc design-for-testability rules that can be used to enhance testability of combinational circuits. Chapter 4 deals with test generation and response evaluation techniques used in BIST (built-in self-test) schemes for VLSI chips. Table of Contents: Introduction / Fault Detection in Logic Circuits / Design for Testability / Built-in Self-Test / References




Digital System Test and Testable Design


Book Description

This book is about digital system testing and testable design. The concepts of testing and testability are treated together with digital design practices and methodologies. The book uses Verilog models and testbenches for implementing and explaining fault simulation and test generation algorithms. Extensive use of Verilog and Verilog PLI for test applications is what distinguishes this book from other test and testability books. Verilog eliminates ambiguities in test algorithms and BIST and DFT hardware architectures, and it clearly describes the architecture of the testability hardware and its test sessions. Describing many of the on-chip decompression algorithms in Verilog helps to evaluate these algorithms in terms of hardware overhead and timing, and thus feasibility of using them for System-on-Chip designs. Extensive use of testbenches and testbench development techniques is another unique feature of this book. Using PLI in developing testbenches and virtual testers provides a powerful programming tool, interfaced with hardware described in Verilog. This mixed hardware/software environment facilitates description of complex test programs and test strategies.




Principles of Testing Electronic Systems


Book Description

A pragmatic approach to testing electronic systems As we move ahead in the electronic age, rapid changes in technology pose an ever-increasing number of challenges in testing electronic products. Many practicing engineers are involved in this arena, but few have a chance to study the field in a systematic way-learning takes place on the job. By covering the fundamental disciplines in detail, Principles of Testing Electronic Systems provides design engineers with the much-needed knowledge base. Divided into five major parts, this highly useful reference relates design and tests to the development of reliable electronic products; shows the main vehicles for design verification; examines designs that facilitate testing; and investigates how testing is applied to random logic, memories, FPGAs, and microprocessors. Finally, the last part offers coverage of advanced test solutions for today's very deep submicron designs. The authors take a phenomenological approach to the subject matter while providing readers with plenty of opportunities to explore the foundation in detail. Special features include: * An explanation of where a test belongs in the design flow * Detailed discussion of scan-path and ordering of scan-chains * BIST solutions for embedded logic and memory blocks * Test methodologies for FPGAs * A chapter on testing system on a chip * Numerous references




Simulation and Optimization of Digital Circuits


Book Description

This book describes new, fuzzy logic-based mathematical apparatus, which enable readers to work with continuous variables, while implementing whole circuit simulations with speed, similar to gate-level simulators and accuracy, similar to circuit-level simulators. The author demonstrates newly developed principles of digital integrated circuit simulation and optimization that take into consideration various external and internal destabilizing factors, influencing the operation of digital ICs. The discussion includes factors including radiation, ambient temperature, electromagnetic fields, and climatic conditions, as well as non-ideality of interconnects and power rails.




Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits


Book Description

The modern electronic testing has a forty year history. Test professionals hold some fairly large conferences and numerous workshops, have a journal, and there are over one hundred books on testing. Still, a full course on testing is offered only at a few universities, mostly by professors who have a research interest in this area. Apparently, most professors would not have taken a course on electronic testing when they were students. Other than the computer engineering curriculum being too crowded, the major reason cited for the absence of a course on electronic testing is the lack of a suitable textbook. For VLSI the foundation was provided by semiconductor device techn- ogy, circuit design, and electronic testing. In a computer engineering curriculum, therefore, it is necessary that foundations should be taught before applications. The field of VLSI has expanded to systems-on-a-chip, which include digital, memory, and mixed-signalsubsystems. To our knowledge this is the first textbook to cover all three types of electronic circuits. We have written this textbook for an undergraduate “foundations” course on electronic testing. Obviously, it is too voluminous for a one-semester course and a teacher will have to select from the topics. We did not restrict such freedom because the selection may depend upon the individual expertise and interests. Besides, there is merit in having a larger book that will retain its usefulness for the owner even after the completion of the course. With equal tenacity, we address the needs of three other groups of readers.




Testing of Digital Systems


Book Description

Device testing represents the single largest manufacturing expense in the semiconductor industry, costing over $40 billion a year. The most comprehensive and wide-ranging book of its kind, Testing of Digital Systems covers everything you need to know about this vitally important subject. Starting right from the basics, the authors take the reader through every key area, including detailed treatment of the latest techniques such as system-on-a-chip and IDDQ testing. Written for students and engineers, it is both an excellent senior/graduate level textbook and a valuable reference.